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Abstract— In previous work [1] we showed how to apply
modern sensor fusion and computer vision techniques to obtain
a dense 3D reconstruction of a crop for precision agriculture. In
this work we consider the case in which we have multiple 3D re-
constructions, obtained from sensor data collected over several
weeks. From this collection of dense reconstructions, we want to
estimate how the size and height of each plant evolve over time.
The problem is challenging since the 3D reconstructions may
contain very partial views of each plant. Moreover, the presence
of multiple plants (and background) requires solving the data
association problem, which makes our goal even more chal-
lenging. We propose a general probabilistic model to estimate
shape and appearance of objects (the plants) using factor graphs.
Then, we tailor the formulation to precision agriculture, and
we show that the choice of a suitable parametrization and the
use of expectation-maximization enables fast inference on plant
growth. Our approach provides high-level description of the
status of each plant, and this can inform the farm manager and
enhance situational awareness. Current results are extremely
encouraging, and open several avenues for future research.

I. INTRODUCTION

The goal of precision agriculture (PA) is to provide
farm managers with relevant information about the status
of the crop. The resulting awareness supports timely deci-
sion making, allowing early treatment of biotic (e.g., pests,
insects, or pathogens) and abiotic (e.g., inadequate moisture
or nutrition) stresses, thereby preventing yield loss [2].

Standard techniques in agriculture are based on manual
measurements or soil sampling from a human operator. This
approach is expensive, labor intensive, and provides a very
sparse overview on the status of the crop. Early attempts
to automate the monitoring process were based on satellite
imaging [3]. These techniques have significant limitations
in terms of resolution as well as coverage in space and
time. Advances in mobile robotics are offering an effective
alternative: the farm manager can adopt one or more robots
(Unmanned Ground Vehicles (UGV) or Unmanned Aerial
Vehicles (UAV)) to perform continuous monitoring of the
crops. These vehicles are relatively inexpensive and provide
high resolution measurements from on-board sensors.

As discussed in Section II, a large body of related work
deals with the use of robotic or computer vision techniques
to support autonomous guidance of robots operating on the
field. In this work, instead, we are interested in perception
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Fig. 1. (a) Rover used for data collection; (b) Sensor equipment:
high resolution camera, Inertial Measurements Unit (IMU), and GPS. (c)
Example of 3D reconstruction produced by our system. (d) Zoomed view.

and monitoring. Our objective is to provide farm managers
with interpreted information about the crops that can be
directly used for decision making. The contribution of the
present paper leverages our previous results [1].

In [1], we discussed the use of sensor fusion and computer
vision techniques for PA. Our crop monitoring system relies
on a tractor rover to collect data in the field (Fig. 1a). The
tractor is equipped with a high resolution camera, an Inertial
Measurements Unit (IMU), and a GPS (Fig. 1b). The tractor
collects the data weekly and we use SLAM (Simultaneous
Localization and Mapping) techniques [4] and multi-view
stereo algorithms [5], [6] to obtain a dense 3D reconstruction
(a colored point cloud) from images and sensor data (Fig. 1c-
d). Each 3D reconstruction provides a snapshot of the field
at a given moment, and the collection of 3D reconstructions
over time provides a 4D model of the crop.

The motivation for the present work is that, while 3D
point clouds provide a detailed view of the field, it is
hard for a non-expert user to interpret those and obtain
information of interest from them. Even more difficult is the
task of detecting patterns from multiple 3D reconstructions
over time. For this reason, the goal of this paper is to use
and interpret the set of 3D reconstructions produced by
the system [1]. Ideally, the farmer is interested in tracking
the size (crown radius), the height, and the color, for each
plant, to detect subnormal growth rates or discoloration. This
problem is challenging: each point cloud contains millions of



points and we need to solve for the data association (which
point corresponds to which plant) and infer the shape and
appearance of a plant from a set of points.

We propose to formulate 4D plant description in terms
of joint inference over a factor graph. We simultaneously
perform inference over the labels which associate each point
to a plant, and plant shape and appearance. This formulation
is general and applicable to the 4D description of generic
objects. Then we tailor this formulation to precision agricul-
ture and show that the choice of a specific parametrization
for the shape of a plant, together with the use of expectation-
maximization [7], enables fast inference.

As a by-product of our pipeline (Fig. 2), we can easily
provide other information, such as canopy size and height,
which is also a major goal in related work, see, e.g., [8].

We test our approach on both simulated and real data
collected in the field. We are able to correctly estimate the
evolution of size and height of the plants. The approach
currently needs some prior information (the number of plants
in each canopy), and in the conclusion of this work we
discuss our current effort towards relaxing these assumptions.

(a) (b)

(e)(c) (d)
Fig. 2. As a by-product of our pipeline we get a segmentation of the field
in canopies, from which we can compute canopy height. (a) original point
cloud. Using ground plane extraction we distinguish the ground (b) from
the plants (c), and compute the height of points in each canopy (d-e).

II. RELATED WORK

A first set of related work deals with robotics and com-
puter vision in precision agriculture. A large body of work
focuses on the use of vision to guide a UAV while weeding,
spraying, or fertilizing [9], [10], [11], [12], [13], [14], [15].
Along this line, we also find contributions on actuation [16]
(including vision-aided fruit picking [17], [18], [19]), con-
trol [20] and coverage [21], [22], [23]. Less attention has
been devoted to estimation aspects (yield evaluation, field
monitoring, data interpretation). Related work on produce
monitoring and maturity evaluation are usually designed for
specific fruits, e.g., mangoes [24], apples [25], grape [26],
or to detect weeds [27]. Polder and Hofstee [28] propose
a plant phenotyping system based on light-field camera.
Anthony et al. [8] propose an approach to estimate crop
height using a 2D laser scanner mounted on a UAV.

The second area of related work is 4D reconstruction.
Schindler et al. [29], [30] consider the problem of under-
standing urban development from a set of historical images.
Pollard and Mundy [31], [32] propose a voxel-based ap-
proach to detect changes over time. Kosecka [33] detects

changes in urban environments from Google Street view
images. Sakurada et al. [34] detect changes by comparing
depth estimates from multiple cameras.

The third branch of related work regards object detection
in point clouds. This body of work usually assumes the
availability of object templates and search for those templates
in a point clouds using local 3D shape features [35], [36],
[37], [38], voting schemes [39], 3D shape contexts [35],
3D Zernike descriptors [36], and spin image signatures [37],
[38]. Recent work focuses on the use of large collections
of weakly labeled data from the web as templates [40],
[41], [42], [43]. de Figueiredo et al. [44] propose a grid-
based Bayesian filter for multiple object detection. Golovin-
skiy et al. [45] propose to perform object recognition by
a sequence of steps, including clustering, segmentation, and
classification. Koppula et al. [46] investigate object detection
via approximate inference on a graphical model, to detect
objects in cluttered indoor scenarios. Patterson et al. [47]
use both global and local descriptors.

Our work differs from related work in many aspects.
Our goal is similar to [8], but our system relies on a high
resolution camera, rather than a 2D laser. This choice has
multiple advantages: monocular cameras are cheap and allow
to obtain a dense reconstruction of the field, which provides
a large amount of information. Contrarily to the literature
on 4D mapping, we reason in terms of objects (the plants),
rather than voxels: this is similar in spirit to SLAM++ [48],
however, we do not have templates for the objects, and our
objects are time-varying (the plants grow over time).

III. A GENERAL FORMULATION TO TRACK
SHAPE AND APPEARANCE OF OBJECTS OVER TIME

Our objective is to track the size and the height of each
plant in the field over time, given a set of 3D reconstructions.
Towards this goal, we first propose a general formulation that
is agnostic to the specific application in PA.

A. Problem Statement
A general statement of the problem discussed in this

section is as follows: given a set of 3D point clouds,
representing the same scene at different time instants, our
goal is to track objects of interest, and provide a description
(e.g., position, shape, appearance) of each object over time.

The input to our problem is a set of 3D point clouds P .
=

{Pt : t = 1, . . . , T}. The index t is a time stamp: each point
cloud Pt describes a 3D reconstruction of the environment
at time t. The environment is assumed to be reasonably
static during a single data collection, but reconstructions
at different times (i.e., for different t) may be different,
because of the presence of time-varying elements in the
environment. Each point cloud contains Nt colored points:
Pt

.
= {ptj

.
= (ztj , c

t
j) : j = 1, . . . , Nt}, where ztj is the 3D

position of the point and ctj is its (rgb) color.
Each point cloud Pt contains partial and noisy measure-

ments of a set of Mt objects: Ot = {Ot
i : i = 1, . . . ,Mt}.

An object i is described by a pair: Ot
i
.
= (Sti ,At

i), where Sti
is the shape of the object and At

i is its appearance. The label
t in (Sti ,At

i) remarks that both quantities are time-varying.
The output of our approach is an estimate of shape Sti and

appearance At
i for all objects i and for all times t.



B. Probabilistic Formulation using Factor Graphs
In this section we model the problem as a factor graph.

Factor graphs are a general representation of estimation
problems in terms of graphical models [49]. A factor graph
includes a set of hidden variables (that we want to estimate)
and a set of factors, that encode probabilistic relations among
the hidden variables. The factors essentially model available
measurements (and prior knowledge) on the hidden variables.

In our problem, the set of hidden variables is O .
=

{Ot
i : t = 1, . . . , T ; i = 1, . . . ,Mt} (the description of the

objects over time), while the available measurements are the
set of point clouds P .

= {ptj : t = 1, . . . , T ; j = 1, . . . , Nt}.
Standard inference over factor graphs is performed via

maximum a-posteriori (MAP) estimation: the best estimate
O? for the objects O is the one maximizing the posterior
probability of O given the measurements P:

O? = arg max
O

P (O | P) (1)

We assume to have a nominal model that tells us how Ot
i

varies from time t− 1 to time t:

P
(
Ot

i | Ot−1
i

)
(2)

This is usually referred to as a process model in robotics [50].
In PA, the reader may think about (2) as a model for the
nominal growth of each plant (more details in Section IV).

Ideally, we would also like to have a mathematical model
that relates the points in P to the unknowns O (measurement
model). However, it is hard to write all point measurements
as an analytic function of all objects. Instead, we can describe
the point measurements corresponding to the observation of
a specific object. We define a measurement model:

P
(
ptj | Ot

Lt
j
,Lt

j

)
(3)

where Lt
j is the point label, that assigns an object id i

to each point observation ptj . The measurement model (3)
describes the probability of measuring a point ptj from a
specific object (specified by Lt

j), having given shape and
appearance (specified by Ot

Lt
j
).

The fact that the point labels L .
= {Lt

j : t = 1, . . . , T ; j =
1, . . . , Nt} are unknown requires to include those as part of
the inference process. Assuming independent noise in the
process model (2) and in the measurement model (3), we
can write the joint posterior P (O,L | P) as [50]:

P (O,L | P) = (4)

P
(
O1
) T∏
t=1


Mt∏
i=1

P (Ot
i | Ot−1

i

) Nt∏
j=1

P
(
ptj | Ot

Lt
j
,Lt

j

)
where P

(
O1
)

denotes probability priors (if available).
In order to get the MAP estimate (1), we have to marginal-

ize the latent variables L from (4):

O? = arg max
O

∑
L

P (O,L | P) (5)

The marginalization in (5) essentially means that we are
looking for the estimate O that best explains the measure-
ments P , considering all possible data association outcomes.

The formulation described so far is very general, but it
is intractable in general, due to the marginalization (5) [51].
In order to write explicit expressions for the process and
measurement models, we need to choose a parametrization
for shape and appearance of the objects. For this reason,
in Section IV-A we commit to a parametrization (which is
tailored to our PA application). Then, in Section V we apply
expectation-maximization to make the computation of the
MAP estimate (5) tractable.

IV. TAILORING THE FORMULATION TO
PRECISION AGRICULTURE

Here we choose a parametrization for the shape and
appearance of the plants which enables to write simple
expressions for the probabilities in (4).

Fig. 3. We parametrize the shape of each plant i (at time t) using the
geometry of the corresponding bounding box. The bottom/top of the box is
a square with side 2rti , and center (xt

i, y
t
i). The height is ht

i .

A. A Simple Descriptor for Plants

We are interested in the size of the crown and the height
of each plant in the field. Therefore the simplest shape
descriptor is a box. We characterize each plant by the
size/height of the corresponding bounding box (Fig. 3). The
box is defined by 4 parameters xti, y

t
i , r

t
i , h

t
i. The base of the

bounding box is a square of side 2rti . The parameters (xti, y
t
i)

describe the Cartesian position of the center of this square;
hti is the height of the box.

We parametrize the appearance of an object as the average
(rgb) color cti ∈ R3 of the points in its bounding box.

We stack these parameters in a vector:

oti = [xti yti rti hti c
t
i] (6)

We call oti a descriptor of plant i at time t.

B. Process model

The process model (2) describes a nominal evolution of
plant descriptor over time. For each plant, the pair (xti, y

t
i)

is an estimate of the position of the root of the plant, and
this is stationary over time:

xti = xt−1
i + νx, yti = yt−1

i + νy (7)

where the random noise terms νx and νy can accomodate
small changes in (xti, y

t
i), e.g., due to external actions.1

We assume to have a nominal model that describes the
evolution of the height hti and the crown radius rti of a plant

1If one omits the noise terms, eq. (7) becomes a deterministic relation,
that can be still used within our framework as it only reduces the number
of hidden variables.



over time. Related literature offers models for the evolution
of those quantities, see, e.g., [52]. We write this model as:

rti = rt−1
i + nr + νr, hti = ht−1

i + nh + νh (8)

where nr and nh are nominal growth factors and νr and νh
are noise terms, that account for random mismatches w.r.t.
the nominal growth model. Since the terms nr and nh are
possibly time-varying, the model (8) is fairly general.

Similarly, the change in appearance is modeled as:

cti = ct−1
i + nc + νc (9)

where nc and νc describe nominal color change and random
noise, respectively.

Equations (7)-(9) describe -for each object i- the nominal
evolution over time of all the parameters we want to estimate.
Putting these relations in compact matrix form, and assuming
Gaussian noise, we obtain the following process model:

P
(
Ot

i | Ot−1
i

)
= α exp

{
1

2

∥∥oti −At
io

t−1
i − bti

∥∥2

Φt
i

}
(10)

where the matrix At
i and the vector bti write eqs. (7)-(9) in

compact form, α is a normalization constant (irrelevant for
the subsequent development), and Φt

i is the covariance of
the noise vector [νx νy νr νh νc].

C. Measurement model

The measurement model (3) describes the likelihood of
a measurement ptj , given that the observation comes from
a given object Ot

i . Since we parametrized the object using
the descriptor oti, the measurement model describes the
relation between a point measurement and the descriptor.
We recall that each measurement ptj is a colored point:
ptj

.
= (ztj , c

t
j). We consider the following model for the

measured appearance:

ctj = cti + εc (11)

which means that the measured color of the point ptj corre-
sponds to the appearance of the objects (its average color)
plus random noise εc. Note that we can account for large
intra-object color variability by operating on the covariance
of the noise term εc.

The position ztj of the 3D point is more difficult to
model as it requires disambiguating points on the top of the
bounding box from points on the sides. For instance, a point
on the top of the box will be described by:

aT
hz

t
j = hti + noise (12)

where ah is a vector that selects the height of the point
from ztj . Eq. (12) says that the height of the point is a noisy
measurement of the height of the box.

On the other hand, a point on the lateral sides of the box
is described by a different measurement model:

aT
xz

t
j = xti ± rti + noise (13)

where ax select the x component from the point ztj , and we
use +rti if the point is on the right side, and −rti if it is on
the left. Roughly speaking, a point on the right (resp. left)

of the box has a positive (resp. negative) shift of rti wrt to
the center of the box, see Fig. 3.

The general expression that relates the measured point
position ztj to the descriptor oti is the following:[

bx by bh
]
ztj =

[
bx by br bh 0

]
oti + εz

(14)
where the variables bx, by, bh ∈ {0, 1} and br ∈
{−1, 0,+1}. For suitable values of the integer variables btj =
[bx by br bh], the model (14) describes points observations
of every side of the box (excluding the bottom which is not
of interest for our application).

In order to write an analytic expression for the mea-
surement model (14), we had to introduce extra (integer)
variables btj , hence the likelihood (3) becomes:

P
(
ptj | Ot

Lt
j
,Lt

j , b
t
j

)
= β exp

{
1

2

∥∥F t
j p

t
j −Gt

jo
t
i

∥∥2

Ωt
j

}
(15)

where β is a normalization constant, Ωt
j is the measurement

covariance, and the matrices F t
j and Gt

j are functions of the
integers btj and write eq. (14) in compact form.

D. Priors

In precision agriculture it is not uncommon to record the
GPS position of the seeds at the moment of planting. In our
experiments we do not use priors, but this information, when
available, can be included in our formulation (4):

P
(
O1
)

=

M1∏
i=1

P
(
O1

i

)
=

M1∏
i=1

γi exp

{
1

2

∥∥Pio
1
i − si

∥∥2

Ψt
i

}
(16)

where the matrix Pi selects the (x, y) position of object
i from the descriptor o1

i , the vector si contains the GPS
measurement of the seed, and γi, Ψt

i are a normalization
constant and a given covariance matrix, respectively.

V. COMPUTING THE MAP ESTIMATE USING EM

Since the marginalization (5) is intractable in general, in
this section we propose an approach based on expectation-
maximization [7] to compute the MAP estimator.

In Section IV we wrote explicit expressions for the pro-
cess model (10), measurement model (15), and possible
priors (16), for our specific PA application. The probabilistic
models are particularly simple, due to our choice of the
descriptors (6), however, it was necessary to introduce extra
variables btj for each point. We call these extra variables B .

=
{btj : t = 1, . . . , T, j = 1, . . . , Nt}. With the introduction
of these variables the MAP estimator (5) becomes

O? = argmax
O

∑
L,B

P (O,L,B | P) =

P
(
O1) T∏

t=1

{
Mt∏
i=1

[
P
(
Ot

i | Ot−1
i

) Nt∏
j=1

P
(
pt
j | Ot

Lt
j
,Lt

j , b
t
j

)]}
(17)

where we have to marginalize out the latent variables L
(which associate a point to an object) and B (which associate
the point to a specific face of the object).



week 1 week 2 week 3
(a

)
3D

re
co

ns
tr

uc
tio

ns
(b

)
C

an
op

y
se

gm
en

ta
tio

n

Se
le

ct
io

n
C

lu
st

er
in

g

(c
)

C
ro

p
an

al
ys

is
(E

M
)

C
an

op
y

1
..
. ...

C
an

op
y

N

(d
)

St
at

is
tic

s

0

2

4

0

10

0

0.2

0.4

time [weeks]plants

h
e
ig

h
t 
[m

]

0

2

4

0

10

0

0.2

0.4

time [weeks]plants

c
ro

w
n
 r

a
d
iu

s
 [
m

]

Fig. 4. Overview of our crop analysis pipeline.

Usually, rather than maximizing the posterior probability
one minimizes the negative log-posterior:

O? = arg min
O

− log

∑
L,B

P (O,L,B | P)

 (18)

Problem (18) is intractable in general, as the sum would
produce a combinatorial number of terms, each one describ-
ing a Gaussian posterior, for a particular choice of Lt

j , b
t
j .

We use Expectation-Maximization (EM) to make the prob-

lem tractable. Rather than solving directly (18), EM solves:

min
O

EL,B|Ō {− logP (O,L,B | P)} (19)

where EL,B|Ō returns the expected values of L,B given the
current guess Ō. The optimization problem (19) is solved
multiple times. At each iteration the problem returns an
estimate for O, that is used as guess Ō for the following
iteration. It is known [7] that (19) iteratively converges to a
minimum of the original cost (18), therefore we can use EM
to compute our map estimate O?.

The practical advantage in the use of EM is that
− logP (O,L,B | P) can be developed as follows:

− logP (O,L,B | P) = − logP
(
O1
)

+ (20)
T∑

t=1

{ Mt∑
i=1

[
− logP

(
Ot

i | Ot−1
i

)
+

Nt∑
j=1

− logP
(
ptj | Ot

Lt
j
,Lt

j , b
t
j

)]}
Substituting eqs. (10), (15) and (16) in (20) we get:

− log P (O,L,B | P) =
M1∑
i=1

∥∥Pio
1
i − si

∥∥2
Ψt

i
+ (21)

T∑
t=1

{ Mt∑
i=1

[ ∥∥ot
i −At

io
t−1
i − bti

∥∥2
Φt

i
+

Nt∑
j=1

∥∥F t
j p

t
j −Gt

jo
t
i

∥∥2
Ωt

j

]}
which is a quadratic cost in the unknown descriptors oti.

Therefore each EM iteration involves two steps. First, the
computation of the expectation of the quadratic cost (21): this
is easy when the expectation is taken over discrete variables
as in (21), and the result of the expectation is a quadratic
function, see e.g., [53]. Second, we have to minimize the
quadratic cost resulting from the expectation step, according
to (19): this only requires to solve a sparse linear system.

VI. PRACTICAL IMPLEMENTATION AND
EXPERIMENTS IN PRECISION AGRICULTURE

In this section we provide a practical description of our
current crop analysis pipeline. We refer the reader to the
video attachment [54] for an example of execution.

The pipeline is summarized in Fig. 4. The input is a set of
3D point clouds (Fig. 4a). From each point cloud, we first
segment the canopies (Fig. 4b) as a preprocessing. Then, for
each canopy, we apply the EM algorithm of Section V, which
estimates the bounding box of each plant (Fig. 4c).

We report details of the canopy segmentation and on the
EM implementation in Sections VI-A and VI-B, respectively.
Finally, we describe current results in Section VI-C

A. Preprocessing: Canopy Segmentation

In this section we propose a preprocessing of the point
clouds that allows a large computational saving and enables
to cope with hilly fields (Fig. 5), in which the height of points
in the point clouds can be influenced by a slope of the field.



Fig. 5. The points in the original point clouds are expressed in a
global reference frame. Therefore, if the field has an upward slope, plants
aligned along a row, thus having the same height ht

i , would produce point
observations at different heights habs. Since the quantity we are interested
in is ht

i , rather than habs, we fit a local ground plane to the point cloud and
we normalize the heights of the points in the cloud w.r.t. this plane.

For each point cloud, this preprocessing includes 3 steps:
1) Plant selection via ground plane extraction: we extract

the ground plane from the point cloud using a standard
RANSAC algorithm. Then, we select the subset of the
points in the cloud that are above the ground: these
are the points belonging to the plants (Fig. 4b). This
largely reduces the number of points as we get rid of
uninteresting points, corresponding to the ground. In
order to have a better estimate of the ground plane,
we divide the field in small patches and we perform the
ground plane fitting on each patch.

2) Height normalization: using the ground plane computed
at the previous step, we normalize the height of the
points with respect to the local ground plane, such that
the plant heights are expressed w.r.t. ground (Fig. 5).

3) Canopy clustering: from the plant segmentation of
Fig. 4b, we apply standard Euclidean clustering algo-
rithms [55], that allow to cluster the plants in each
canopy, and helps to filter our small imperfections.

The advantage of canopy clustering is that we can perform
EM for each canopy independently. This implies a compu-
tational advantage: intuitively, restricting the attention on a
single cluster, EM has to search in a smaller space of point-
to-plant labels, hence making inference faster.

The output of the preprocessing is a set of point clouds
Ccanopy = {C1

canopy, . . . , CTcanopy}, for each canopy. As we
remarked in Fig. 2, a useful by-product of this preprocessing
is that, after canopy segmentation, we can easily estimate
canopy height and size. In the following we go further, and
we discuss our EM implementation that estimates crown
radius and height for each plant in the canopies.

B. Settings for EM

The settings we use for the EM algorithm are as follows.
Initialization. We initialize EM by setting plants position

uniformly spaced within the canopy. The algorithm will be
then in charge of refining this initial guess. In order to initial-
ize uniformly spaced plants, we need 2 pieces of information:
the number of plants in the canopy, and the number of rows
along which the plants are arranged. These are the only
manual inputs required by our pipeline, and in Section VII
we comment on our current effort to automatically estimate
those quantities. All plants are initialized to have the same
size, which can be inferred from the knowledge of canopy
size and number of rows in the canopy. As initialization for
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Fig. 6. Crop analysis on simulated data. We simulate 5 plants growing
over 4 weeks and we apply our EM algorithm to the corresponding point
clouds. The results are the statistics in figure (b) and (c). Each bar also
reports the error intervals in black. Errors are less than 4 cm in both height
and canopy size estimates.

plant height, we simply consider the average height of points
within a radius (20cm) around the plant position guess.

EM settings. To implement EM we need to define the
following parameters: growth factors nr, nh, and the covari-
ance matrices Φt

i, Ωt
j , and Ψt

i, in eqs. (10), (15), (16). In
the following experiments we set nr = 0 and nh = 0 and
set all covariances to be identity matrices. Moreover, we do
not use any priors on plant descriptors (Section IV-D).

C. Results
We tested our algorithm in both simulated and real data.

Results from simulations show that the algorithm is very
accurate in estimating plants height and size. Real tests show
that the approach can perform crop analysis using field data,
and provides reasonable results.

Simulated data. We created 4 point clouds, describing 5
plants growing over 4 weeks, see Fig. 6a. Then we applied
the EM algorithm with the settings specified in Section VI-B.
The corresponding results are shown in Fig. 6. Fig. 6a shows
the red boxes estimated by the EM algorithm, superimposed
on the plants. The statistics in Fig. 6b-c show the estimated
height and crown radius over time, together with the error in-
tervals in black. Errors are computed as differences between
the estimate and the corresponding ground truth (available
in simulation). Estimation errors are less than 4cm.

Real data. For the real tests we used the point clouds
produced by the system [1]: we performed 3 data collections
on a test field in Tifton, Georgia, over 3 consecutive weeks.
From sensor data we used the pipeline described in [1] to
reconstruct 3 dense point clouds, on which we applied the
crop analysis pipeline presented in this paper. Note that while
we use the term “week 1” to denote the first data collection,
it does not mean that the plants are 1 week old.

All the images in Fig. 4 show intermediate results of our
pipeline on the real data. Fig. 4c contains a visualization of
the outcome of the EM pipeline for 2 of the 10 canopies in
the analysed portion of the field. EM estimates a bounding
box for each plant. From the estimated size/height of the
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Fig. 7. Results from field tests. On the x-axis we plot each plant (arranged
by clusters, with the same color code of Fig. 4b). (a) For each plant we
show the estimated height at week 1 (light green), week 2 (dark green), and
week 3 (yellow). (b) Estimated crown radius for each plant.

bounding box, we can directly plot high-level statistics as the
ones in Fig. 4c, which show the evolution of crown radius
and height for each plant.

Statistics for all the canopies are shown in Fig. 7; for each
plant we plot estimated height and crown radius at week 1,2
and 3. Plants are clustered with the same color code of Fig. 4
(e.g., the blue bar underlines the statistics related to the plants
in the blue canopy of Fig. 4).

We currently do not have ground truth data to compare
against and we can only observe that the estimates for the
height are reasonable for the crops under analysis (cabbage
and broccoli). Moreover, the height increases over the second
week, while the growth is slower (in average) between
week 2 and 3. The statistics show larger fluctuations of the
crown radius estimates. This is an intrinsic limitation of the
problem: often the point clouds are not dense enough to
correctly discern the boundary of each plant, resulting in
noisy radius estimates.

VII. DISCUSSION AND FUTURE WORK

In this paper we propose an approach to estimate crown
radius and height for each plant in a field, from a set of
dense 3D reconstructions. Our initial results are encouraging:
we can correctly segment canopies and obtain reasonable
estimates for crown radius and height of each plant.

The current pipeline requires two manual inputs: for each
canopy a human operator has to specify the number of plants
and the arrangement (1 or 2 rows). Moreover, we initialize
EM assuming that the plants are uniformly spaced in the
canopies. This assumption is reasonable for the cultures
under analysis (broccoli and cabbage, which are manually
transplanted at regular distances), but may not be realistic
for other cultures (e.g., corn) for which the density of plants
can largely vary across the field.

Fig. 8. Preliminary results on image-based plant detection for plants at
early stage of growth.

We are currently working towards relaxing both assump-
tions, towards the goal of having a fully automated crop
analysis pipeline that works for general crops.

First, we are working on image-based plant detection
algorithms to count the number of plants in each canopy
and have a better guess on plant position. While we do not
expect to have good results for mature crops using image-
based detectors, the detector is expected to perform well at
early stages of growth, when the plants are well separated
(see our preliminary results in Fig. 8).

Second, we are currently collecting data using a UAV
(besides the tractor system of [1]). The UAV allows to
cover more points of view with respect to the tractor, hence
enabling denser reconstructions. Moreover, the UAV is the
only viable alternative to monitor fast growing crops (as
corns), that after few weeks are already too tall to be
monitored by our tractor system.

We are also exploring other applications of 4D imagining
in agriculture. Yield estimates can be made earlier in the
season by identifying fruiting structures and flowering pat-
terns. This may be useful in managing contracts with buyers,
storage facility availability, labor and machinery logistics.
Identifying the size and shape of the plant canopy and the
amount of foliage would be beneficial in directing chemical
applications at the right locations and in the right volumes
to improve pest control efficiency. Variable application of
plant growth regulators in crops such as cotton based on
4D imaging could improve fruit production and yield by
identifying the locations of excessive plant growth. Weed
identification could determine which weeds are in a field,
where they are and how fast they are growing, increasing
the efficiency of post-emergence herbicides.
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