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Abstract—We provide a unified probabilistic framework for
trajectory estimation and planning. The key idea is to view these
two problems, usually considered separately, as a single problem.
At each time-step the robot is tasked with finding the complete
continuous-time trajectory from start to goal. This can be quite
difficult; the robot must contend with a potentially high-degree-
of-freedom (DOF) trajectory space, uncertainty due to limited
sensing capabilities, model inaccuracy, and the stochastic effect of
executing actions, and the robot must find the solution in (faster
than) real time. To overcome these challenges, we build on recent
probabilistic inference approaches to continuous-time localization
and mapping and continuous-time motion planning. We solve
the joint problem by iteratively recomputing the maximum a
posteriori trajectory conditioned on all available sensor data and
cost information. Finally, we evaluate our framework empirically
in both simulation and on a mobile manipulator.

I. INTRODUCTION & RELATED WORK

Trajectory estimation and planning are both important capa-
bilities for autonomous robot navigation. Trajectory estimation
is fundamentally backward-looking: the robot estimates a
trajectory of previous states that are consistent with a history
of noisy and incomplete sensor data. Conversely, planning is
fundamentally forward looking: starting from an estimate of its
current state, the robot optimizes a trajectory of future states
to minimize a cost function and achieve a feasible solution.

In this paper, we provide a unified approach to trajectory
estimation and planning. The key idea is to view these two
problems, usually considered separately, as a single problem.
At each time-step the robot is tasked with finding the complete
continuous-time trajectory from start to goal. This can be
quite difficult; the robot must contend with a potentially high-
degree-of-freedom (DOF) trajectory space, uncertainty due
to limited sensing capabilities, model inaccuracy, and the
stochastic effect of executing actions, and the robot must find
the solution in (faster than) real time.

To overcome these challenges, we build on recent proba-
bilistic inference approaches to continuous-time localization
and mapping and continuous-time motion planning. We solve
the joint problem by iteratively recomputing the maximum a
posteriori (MAP) trajectory conditioned on all available sensor
data and cost information. In brief, we represent continuous-
time trajectories as samples from a Gaussian process (GP) [5,
22] and then formulate the estimation and planning problem on
a single probabilistic graphical model. We perform inference
on the graph using numerical tools that solve a nonlinear
least squares optimization problem, and generate fast, iterative
solutions by exploiting the structure of the problem.

Fig. 1: The Vector mobile manipulator, with an omni-drive
base and a 6-DOF Kinova JACO2 arm, is solving the STEAP
problem. The task involves picking up an object from the white
table on the right and dropping it off on the white table on
the left, while avoiding the blue table. The semi-transparent
robots show the trajectory taken, while the solid robot is the
goal configuration.

By viewing trajectory estimation and motion planning as
inference, we are able to borrow and combine tools from
different areas of robotics. The Simultaneous Localization
and Mapping (SLAM) community has focused on efficient
optimization algorithms for many years. One of the more
successful approaches is the Smoothing and Mapping (SAM)
family of algorithms [6] that formulates SLAM as inference in
a factor graph [19] and exploits the sparsity of the underlying
large-scale linear systems to perform inference efficiently.
Given new sensor data, incremental Smoothing and Mapping
(iSAM) [14, 16] exploits the structure of the problem to
efficiently update the solution rather than resolving the entire
problem from scratch. Recently, Tong et al. [32] introduced a
continuous-time formulation of the SAM problem, in which
the robot trajectory is a function that maps any time to a
robot state. The problem of estimating this function along with
landmark locations has been dubbed simultaneous trajectory
estimation and mapping (STEAM). Tong et al.’s approach was
extended in Barfoot et al. [5] to take advantage of the sparse
structure inherent in the STEAM problem, in Yan et. al [35]
to efficiently incrementally update the solution, and in Dong
et al. [9] to 4D mapping problems. The resulting algorithms
speed up solution time and can be viewed as continuous-time



analogs of Dellaert’s original square-root SAM algorithm [6]
and Kaess et al.’s iSAM2 algorithm [16].

While probabilistic inference is frequently used as a foun-
dation for state estimation and localization, it is only recently
that these techniques have been used for planning. The du-
ality between linear estimation and control has long been
established [17], but the solution to estimation and control
problems have, for the most part, evolved independently within
their own subfields. In the last decade this has begun to
change. The optimization-inference duality has been shown
to extend to planning and optimal control [31] with some
early work in this direction looking at solving Markov de-
cision processes (MDP) [4]. Several researchers have recently
proposed a probabilistic inference perspective on planning
and control problems, leveraging expectation maximization
[34, 20], expectation propagation [33], KL-minimization [28],
and efficient inference in factor graphs [7, 12, 23]. Interest-
ingly, the incremental inference technique [15] used in [7] to
solve replanning problems is the same as originally used in
[16] to solve SLAM problems. We exploit this idea to solve
our more general class of simultaneous trajectory estimation
and planning problems.

Efficient replanning algorithms for navigation are an active
area of research [18, 11] but most previous work is difficult to
extend to real, high-dimensional systems, is computationally
expensive, or does not incorporate uncertainty in the robot’s
state estimate. Recent work in Simultaneous Localization and
Planning (SLAP) attempts to unify robot localization and
planning, with early work using HMMs [25], more recent
approaches designed for dynamic environments [1, 27], and
new approaches that combine state estimation and model
predictive control [29].

In this work, we tackle the simultaneous trajectory es-
timation and planning (STEAP) problem within a unified
probabilistic inference framework. The STEAP problem is a
generalization of the SLAP problem in that the goal of STEAP
is to compute the full continuous-time trajectory conditioned
on observations and costs in both the past and the future. By
contrast, SLAP only computes the current state estimate and an
updated plan. Following Yan et al. [35] and Dong et al. [7], we
represent the trajectory as a continuous-valued function map-
ping time t to robot states θ(t), and seek the MAP function
with an incremental solver [16]. This allows us to avoid re-
solving the STEAP problem from scratch as new observations
are encountered and only update the trajectory where required,
dramatically reducing the overall computational burden of
our approach and enabling a faster-than-realtime solution. To
better accommodate mobile manipulation problems, we build
on Barfoot et al.’s recent work on continuous-time trajectory
estimation on SE(3) [2] and extend Dong et al. [7] to plan
trajectories on Lie groups. Finally, we implement our proba-
bilistic inference framework for solving the STEAP problem
on the Vector mobile manipulator (Fig. 1), and show that our
framework is able to incrementally integrate real-world sensor
data and directly update its trajectory estimate and motion plan
in real-time.

II. BACKGROUND: TRAJECTORY OPTIMIZATION AS
PROBABILISTIC INFERENCE

Following previous work on both STEAM problems [5, 35]
and Gaussian process motion planning [7, 22], we view the
problem of estimating or optimizing continuous-time trajecto-
ries as probabilistic inference. We represent the trajectory as
a continuous-valued function mapping time t to robot states
θ(t). The goal is to find the maximum a posteriori (MAP)
continuous-time trajectory given a prior distribution on the
space of trajectories and a likelihood function.

A. The Trajectory Prior

A prior distribution over trajectories can be defined as a
vector-valued Gaussian process θ(t) ∼ GP(µ(t),K(t, t′)),
where µ(t) is a vector-valued mean function and K(t, t′) is a
matrix-valued covariance function. For any collection of times
t = {t0, . . . , tN}, θ has a joint Gaussian distribution

θ
.
=
[
θ0 . . . θN

]> ∼ N (µ,K), (1)

with mean vector µ and covariance kernel K defined as

µ
.
=
[
µ(t0) . . . µ(tN )

]>
, K .

= [K(ti, tj)]
∣∣∣
ij,0≤i,j≤N

. (2)

The prior distribution is then defined by the GP mean µ and
covariance K:

p(θ) ∝ exp

{
− 1

2
‖ θ − µ ‖2K

}
. (3)

The prior encodes information about the system that is known
a priori. For example, in robotic state estimation problems,
a structured GP prior may encourage trajectories to follow
known system dynamics, e.g. that the robot velocity changes
smoothly [5, 32]. In motion planning, the prior is selected to
encourage higher-order derivatives of the system configuration
to be minimized [7]. The prior we use in our implementation
is detailed in Sec. III-C1.

B. The Likelihood Function

The likelihood function encodes information about a par-
ticular problem instance. For example, in STEAM problems,
the likelihood function encourages posterior trajectories to be
consistent with proprioceptive or landmark observations [5],
while in motion planning problems the likelihood function
encourages posterior trajectories to be collision-free [7].

Let e be a collection of random binary events. Examples
of events include collision, receiving a sensor reading, or
reaching a goal. The likelihood function is the conditional
distribution l(θ; e) = p(e|θ), which specifies the probability
of an event or a measurement e given a trajectory θ. We define
the likelihood as a distribution in the exponential family

l(θ; e) ∝ exp

{
− 1

2
‖ h(θ, e) ‖2Σ

}
(4)

where h(θ, e) can be any vector-valued cost function with
covariance matrix Σ. The specific likelihood used in our
implementation is detailed in Section III-C.



C. Computing the MAP Trajectory

Given Eqs. (3)-(4), the goal is to compute the maximum a
posteriori (MAP) trajectory

θ∗=argmax
θ

{
p(θ)p(e|θ)

}
=argmin

θ

{
−log

(
p(θ)p(e|θ)

)}
(5)

= argmin
θ

{
1

2
‖ θ − µ ‖2K +

1

2
‖ h(θ, e) ‖2Σ

}
(6)

where Eq. (6) follows from Eq. (3) and Eq. (4). The MAP
estimation problem can therefore be reduced to a nonlinear
least squares problem and solved with tools like Gauss-Newton
or Levenberg-Marquardt.

III. SIMULTANEOUS TRAJECTORY ESTIMATION AND
PLANNING WITH FACTOR GRAPHS

The MAP trajectory computation in Section II-C can be
executed efficiently by exploiting known structure in the
problem. In particular, the prior and the likelihood functions
can be factored into a product of functions that is organized
as a bipartite factor graph G = {Θ,F , E},

p(θ)p(e|θ) ∝
∏
i

fi(Θi). (7)

The variables Θ
.
= {θ0, . . . ,θN} are a set of instantaneous

robot states along the trajectory, the factors F .
= {f0, . . . , fM}

are functions on variable subsets Θi of Θ, and E are edges
connected to the two types of nodes. Thus, we can write
the posterior distribution as a product of the factors that
collectively represent the prior and the likelihood

p(θ|e) ∝ fprior(Θ)f like(Θ). (8)

In the remainder of this section we describe the factor
graph formulation of and relationship between Smoothing and
Mapping (SAM) [6], Simultaneous Trajectory Estimation and
Mapping (STEAM) [5, 2], Gaussian Process Motion Plan-
ning 2 (GPMP2) [7], Simultaneous Localization and Planning
(SLAP) [25, 1], and our proposed method, Simultaneous
Trajectory Estimation and Planning (STEAP). We then provide
details on the factors used in the STEAP problem, discuss
incremental inference and summarize the STEAP approach
with a simple toy example.

A. Factorization in Related Problems

We begin with the smoothing and mapping (SAM) [6]
problem, an early work that uses factor graphs to address state
estimation problems in robotics. The goal is to estimate the
full posterior trajectory given measurements. The factor graph
used in SAM is

p(θest|e) ∝ fpriorfmeas, (9)

where fprior is the prior on the first state fprior = fprior(θ0),
and fmeas is the likelihood of all sensor measurements, which
itself factors as

fmeas =
∏
i

fmeas
i (Θi). (10)

TABLE I: Summary of related problems.

Method Problem solved Factorization
SAM Estimation + Mapping fpriorfmeas

STEAM Estimation + Mapping fgpfmeas

GPMP2 Planning fgpfobsffix

SLAP Estimation + Planning Estimation : fpriorfmeas

Planning : fpriorfobsffix

STEAP Estimation + Planning fgpfmeasfobsffix

Like SAM, Simultaneous trajectory estimation and mapping
(STEAM) [5, 2] addresses trajectory estimation problems.
The key difference is that in STEAM, the trajectory is no
longer treated as a discrete sequence of states Θ, but rather
a continuous-time trajectory sampled from a GP. The prior is
a joint distribution on the full trajectory fprior = fgp(Θ),
yielding a factorization

p(θest|e) ∝ fgpfmeas. (11)

GPMP2 [7] is a probabilistic inference framework for solving
planning problems that utilizes the GP trajectory representa-
tion from STEAM. The goal is to find collision-free future
trajectories that satisfy the GP prior. The likelihood is not
based on sensor measurements, but rather the likelihood of
a trajectory being free from collision with obstacles. The
collision factor is defined as

fobs =
∏
i

fobsi (θi). (12)

A fixed start and goal state is also required in planning
problems, and therefore incorporated in to the likelihood. So
factors to fix start and goal configurations are also employed

ffix = fstart(θ0)fgoal(θN ). (13)

The full factor graph of GPMP2 is, therefore

p(θplan|e) ∝ fgpfobsffix. (14)

In real robotics applications, it is frequently the case that
both estimation and planning problems must be solved. One
approach to tackling this problem is SLAP [25, 1]. Although
previous work in this area does not employ factor graphs,
we explain SLAP using them here to illustrate its relation to
other problems. SLAP can be viewed as splitting the inference
problem into two factor graphs, an estimation graph and a
planning graph, defined by

p(θest|e) ∝ fpriorfmeas, (15)

p(θplan|e) ∝ fpriorfobsffix. (16)

SLAP solves the estimation graph first to generate an estimate
of the current state and then uses the MAP estimate of the
current state to initialize and solve the planning problem.

B. Simultaneous Trajectory Estimation and Planning (STEAP)

We now formally define the STEAP problem: STEAP solves
state estimation and planning problems simultaneously like
SLAP, but instead of splitting the factor graph in to two pieces,
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Fig. 2: Example factor graph representation of (a) STEAM, (b) GPMP2, and (c) STEAP. Gray node shows current time-step.

STEAP perform inference on the entire factor graph at once.
The STEAP factor graph is defined as,

p(θ|e) ∝ fgpfmeasfobsffix. (17)

By solving a STEAP problem, we solve for the full trajectory
θ = θest ∪ θplan. There are two major advantages of using
STEAP as compared to SLAP:

(i) Optimization of a single graph allows information flow
between the two sub-graphs of estimation and planning, which
is not possible with SLAP. This increases performance in
both estimation and planning. For example, the collision-free
likelihood of both the past and the future part of the graph
encourages the estimated past trajectory to remain in areas
without obstacles, since a successfully traversed trajectory
would not have passed through obstacles. This helps contend
with noisy (or drops in) localization and reduces estimation
errors. Similarly, the trajectory estimation information corrects
the estimate of the current robot position, providing feedback
for the planned future trajectory.

(ii) The number of variables in a STEAP factor graph do
not change much during execution i.e. only a few measurement
factors are added in each step. This allows for very efficient
incremental inference using the Bayes tree algorithm [16].
Recomputing the solution with Bayes trees only requires a
small fraction of the runtime compared to reoptimizing the
full graph from scratch. Additional discussion of incremental
inference using the Bayes tree is in Sec. III-D. Factorization
of the various problems is summarized in Table. I, and their
factor graphs are shown in Fig. 2.

C. STEAP Factor Definitions

1) The Gaussian process prior factor: A Gaussian RBF
kernel defines a prior distribution of trajectories with no pair-
wise independences. In other words, all states are connected to
a single GP prior factor, fgp = fgp(Θ). This prior cannot be
factored, and destroys the problem’s sparsity, making inference
computationally expensive. However, Barfoot et al. [5] showed
that certain types of GP priors generated by linear time varying
(LTV) stochastic differential equations (SDEs), are sufficient
to model Markovian robot trajectories. These priors are highly
structured, and factor according to

fgp =
∏
i

fgpi (θi,θi+1) (18)

where any GP prior factor connects to only its two neighboring
states, forming a (Gauss-Markov) chain.

In GPMP2 [7], the GP prior on trajectories is generated by a
LTV-SDE defined on a vector space. This is shown in Fig. 2 (b)
where states (white circle) form a chain by connecting to GP
prior factors (black circle). A similar representation was used
earlier to define GP prior on STEAM problems [5] (Fig. 2 (c)).
GP priors have also been formulated with non-linear SDEs [3]
and on the SE(3) Lie group [2].

If the robot configuration is in vector space Rn, like
GPMP2, STEAP can use the GP prior defined in [5]. But
we develop STEAP for mobile manipulators that have their
configuration space defined by a Lie group product x ∈
SE(2)×Rn where n is the degree of freedom of the arm and
the SE(2) Lie group defines a planar translation (x and y)
and rotation (yaw) for the mobile base. We employ a constant
velocity i.e. noise-on-acceleration model to define a non-linear
SDE that generates our GP prior. See [8] for details about the
GP prior that we use for Lie groups.

2) Obstacle factors: All obstacle factors are constructed
similarly to GPMP2 [7] except that they are defined for the
Lie group configuration space. The obstacle factors evaluate
collision cost using a hinge loss function and a signed distance
field of the environment. See [7] for details.

3) Start and goal factor: These are multivariate Gaussian
factors

fstart(θ0) = exp

{
− 1

2
‖ θ0 − θstart ‖2Σfix

}
(19)

fgoal(θN ) = exp

{
− 1

2
‖ θN − θgoal ‖2Σfix

}
(20)

with the mean as the start or goal and a small covariance Σfix,
and are used to tie down the trajectory at the start and goal
locations. When the trajectory has finished execution, the goal
factor is replaced with the pose measurement factor so that
the final posterior update gives the final trajectory estimate.

4) Measurement factor: Since there are many types of sen-
sors that provide different measurements, there are many types
of measurement factors [6]. We use a multivariate Gaussian
measurement factor for the current state measurement

fmeas
i (θi) = exp

{
− 1

2
‖ θi − µmeas

i ‖2Σmeas

}
(21)

where the measurement queried from sensors has mean µmeas
i

with covariance Σmeas.

D. Incremental Inference

In Sec. II-C we discussed how to solve the MAP inference
problem as non-linear least squares optimization. But one
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Fig. 3: A simple example illustrates STEAP using a robot (gray) that navigates to the goal (black circle) while avoiding
obstacles. At each step the right side shows the environment with ground-truth (green), estimated (red), and replanned (blue)
trajectories. The left side shows the corresponding factor graph. See text for details.

significant drawback of using non-linear least squares is that
with every update the problem must be completely resolved
(the cost on every factor will be evaluated and every variable
is updated), even if the factor graph is mostly unchanged.

To reduce these redundant calculations, Kaess et.al. pro-
posed efficient updates with the Bayes tree data structure [16].
When re-solving a graph with only minor changes (in variables
or factors), only the parts of the solution associated with the
changes will be updated, leaving most of the solution un-
changed. By updating the solution in this incremental manner,
the efficiency of inference is significantly improved.

Since only a very small portion of the STEAP factor graph
changes (few variables added as new measurement factors)
at each time-step, we convert the factor graph into a Bayes
tree, and update the tree incrementally. By utilizing this
efficient incremental inference technique we get a significant
performance boost, and easily achieve real-time performance,
as illustrated in our experiments.

E. A STEAP Example

We use an example, illustrated in Fig. 3, to describe how
STEAP works using Algorithm 1. In this example, a robot
with stochastic dynamics starts at time t0 and needs to reach
goal at time t4 while avoiding any obstacles.

First, we construct a factor graph that will reflect the
prior distribution. A small, sparse set of robot states are
connected via GP factors that collectively form the prior
distribution of a continuous-time trajectory. The current time-
step is shown in gray. Note that the small size of the graph is

just for illustration, in practice our approach can handle very
large graphs (see Section V for the graph sizes used in our
experiments). Then, we add a start and a goal factor with a
small covariance (to tie the trajectory down at the start and
goal) and obstacle factors. In practice, there are also multiple
binary obstacle factors present between any two states (omitted
here for clarity) that use GP interpolation to project the cost
between any two states back on to those states and allow
the trajectory to stay sparse but still reason about obstacles
between the sparse states (see [7] for details). The start, goal
and obstacle factors together form the likelihood. Next, we can
find the mode of the posterior shown in blue at the top level
of Fig. 3, which is inherently a special case of our approach
providing the solution to the GPMP2 motion planning problem
since no measurement factor are present and there is no state
estimation yet at this step.

Next, the planned solution between t0 and t1 is upsampled
to a desired resolution with GP interpolation, checked for
safety, and is then executed on the robot. The ground-truth
trajectory is shown in green. Since the system is stochastic,
execution is noisy. We make an observation to get a mea-
surement factor and insert it into the graph at t1. This new
factor is combined with the old likelihood to produce the
updated likelihood. Using the Bayes tree to efficiently organize
computation, we generate a new MAP solution. Note that,
in this case, the factor graph is changed by adding only one
measurement factor, so the incremental inference performed
using the Bayes tree will be very fast. The red portion of
the trajectory is an estimate of the trajectory traversed by the



Algorithm 1 STEAP

1: Initialize θ
2: FG = updateFactorGraph(fgp, fobs, ffix)
3: θ = incrementalInference(FG, θ)
4: for i = 0 to N − 1 do
5: θi:i+1 = interpolateGP(θ, i, i+ 1, resolution)
6: if collisionFree(θi:i+1) then
7: execute(θi:i+1)
8: fmeas

i+1 = localize()
9: FG = updateFactorGraph(FG, fmeas

i+1 )
10: θ = incrementalInference(FG, θ)
11: else
12: return failure
13: end if
14: end for
15: return success

robot until time t1 and the blue portion of the trajectory is
the replanned solution to the goal. This whole process is then
repeated (steps are shown from top to bottom in Fig. 3) until
the robot reaches the goal at t4. At t4 again we have a special
case of our approach that provides a solution to the trajectory
estimation problem (STEAM), but with extra obstacle factors.

IV. IMPLEMENTATION DETAILS

We implement STEAP within the PIPER [21] package
using ROS [26] and GPMP2 [7] and have open-sourced the
code. Fig. 4 shows a block diagram of the framework. The
offline phase assimilates (i) robot-specific information includ-
ing model and physical parameters, (ii) problem definitions
and optimization parameters, and (iii) a pre-generated signed
distance field (SDF) of the environment, which is assumed to
be static. In the online phase, this information is passed to our
central module, STEAP Module, that solves STEAP prob-
lems and communicates with the Robot Module (simulated
or physical) with sensors, and the Localization Module
that takes raw sensor measurements and outputs a noisy pose
estimate for the robot that can be interpreted by the STEAP
Module.

Note that in our framework, the Localization Module
is free to be any source of raw or processed sensor informa-
tion, as long as suitable factors are defined to fuse sensor
information in the factor graph, e.g. GPS, LIDAR, monocular,
or stereo camera data. In our implementation we use a depth
image-based localization algorithm, detailed in Section IV-C.

A. The STEAP Module

This module constructs the factor graph for the problem
using the robot and problem configuration and iteratively per-
forms inference with the changing factor graph. At any step the
replanned solution is upsampled and checked for safety, and is
sent to Robot Module. When Localization Module
returns a current pose measurement, new measurement factors
are added to the graph and the updated posterior is evaluated.
This procedure repeats until the full trajectory completes
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Module
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Module
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Trajectory

P
os

e
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Fig. 4: Block diagram of our framework showing all the
components and how they interact. White boxes are modules
and gray boxes are data. Sensor measurements flow from
Robot Module to Localization Module.

Fig. 5: Left: the PrimeSense depth camera mounted on the
robot base. Right: one 8m×6m×1.5m occupancy grid map
built by the mapper module.

execution. Given the generic implementation of this module,
our framework can be used for any simulated or real robot as
long as the robot information is provided in the offline phase.

B. The Robot Module

This module consists of the robot API and controllers that
can understand and execute the trajectory passed by STEAP
Module for a real robot or an interface with Gazebo for
a simulated robot. Sensors on the robot pass information
to the Localization Module. Note that in simulation
adjustable random noise is mixed in both system dynamics and
sensor measurements, to simulate the real-world stochasticity.

C. The Localization Module

The Localization module reads raw sensor data from Robot
Module, calculates a pose estimate of the robot, and provides
this information to STEAP Module. We can use any SLAM
pipeline as a Localization module, and we choose an ICP-style
iterative approach, similar to the tracking in KinectFusion [13],
to achieve real-time performance on the entire system. Track-
ing is executed on the full SDF generated by Mapper. We use
CUDA [24] to implement and parallelize the tracking module
to achieve real-time performance. Although additional sensor
data like RGB images, odometry, and laser scans are available
to the robot, we only use depth images in our experiments.

D. The Mapper

Obstacle factors require signed distances to calculate obsta-
cle cost. Although we can calculate a SDFs from CAD models



Fig. 6: STEAP result on an example from the simulation
benchmark with a planar 2-link mobile arm. Ground-truth
(green), estimated past (red) and replanned future (blue) tra-
jectories are shown with the current robot pose between the
red and blue trajectories and the goal at the end of the blue
trajectory. Best viewed in color.

in simulation, we will not have these models available in most
real-world environments. Therefore, we build SDFs from sen-
sor data. We use depth scans from depth sensors (a simulated
depth camera in simulation and a PrimeSense, shown in Fig. 5,
in real-world experiments), and an occupancy grid mapping
approach [30, Ch.9] to generate the signed distance field. The
space is first discretized into small cells, and a probability of
occupancy po is assigned to each cell, with initial po = 0.5
(since we have no information). All pos are updated by sensor
measurements, and after all sensor data is received, we assume
cells with po ≥ 0.5 are occupied, and cells with po < 0.5 are
unoccupied. Note that we assume cells with po = 0.5, which
indicates no depth measurement available, are occupied, since
it is safer to assume that locations never observed are occupied.
After the occupancy grid mapping, we calculate the signed
distance field by efficient distance transformation [10]. We use
CUDA to implement occupancy grid mapping and distance
transformation, allowing us to achieve real-time performance
on scenes roughly of size 8m×6m×1.5m with 3cm resolution.
A map constructed with this approach is shown in Fig. 5.

V. EVALUATION

We conduct experiments1 and demonstrate our framework
on a 2-link planar mobile arm in simulation, shown in Fig.
6 and a mobile manipulator, show in Fig. 1 consisting of an
omni-drive base and a 6-DOF Kinova JACO2 arm.

A. Benchmark With a 2-link Planar Mobile Arm

We use a simulated benchmark to compare three scenarios.
First, an open loop execution (OL) that, after the initial infer-
ence, executes the planned trajectory without any estimation
or replanning. Second, simultaneous localization and planning
(SLAP) that uses the current measurement factor in the graph,
but updates only a truncated version of the graph associated
with the future states to replan, and, finally, our proposed
simultaneous trajectory estimation and planning framework
(STEAP) that performs inference on the full factor graph,

1A video of experiments is available at https://youtu.be/lyayNKV1eAQ

Table II.A Success rate.

ncam 0.0001 0.0005 0.001
OL SLAP STEAP SLAP STEAP SLAP STEAP

ndyn

0.05 0.4 1 0.975 0.975 1 1 0.925
0.1 0.275 1 0.925 1 1 0.975 0.95
0.5 0.1 0.875 0.775 0.875 0.875 0.85 0.85

Table II.B Goal error.

ncam 0.0001 0.0005 0.001
OL SLAP STEAP SLAP STEAP SLAP STEAP

ndyn

0.05 3.01 0.526 0.436 0.239 0.422 0.219 0.269
0.1 2.9 0.646 0.236 0.322 0.39 0.338 0.296
0.5 3.71 0.655 0.533 0.38 0.535 0.399 0.428

Table II.C Estimation error.

ncam 0.0001 0.0005 0.001
SLAP STEAP SLAP STEAP SLAP STEAP

ndyn

0.05 2.46 1.41 2.68 1.3 2.76 1.51
0.1 2.52 1.25 2.36 1.21 2.67 0.686
0.5 1.92 0.943 1.77 1.18 2.51 0.64

updating the complete MAP estimate of the trajectory with
every new incoming measurement factor.

For this benchmark we use a simulated 2-link planar mobile
arm with base of size 1m× 0.7m and link length 0.6m in an
environment of size 30m×20m. The environment is populated
with 20 randomly generated obstacles of size 1m × 1m.
The graph consists of 30 states from start to goal with 5
interpolated binary obstacle factors between any two states.
We compare OL, SLAP and STEAP across different amounts
of robot dynamics noise (ndyn), implemented as additive noise
to the robot velocity, and camera noise (ncam), implemented
as additive noise when receiving depth information from the
camera on the robot. Each setting is run with 40 distinct seeds
(each seed yields a new environment) to account for stochas-
ticity, which are kept the same across all three scenarios.
In each trial we record if the trajectory successfully finishes
without collision (success), the distance from the goal (goal
error) at the end of execution, and L2 norm of the ground-truth
trajectory with the estimated trajectory (estimation error).

The results for this benchmark are summarized in Table
II.A–II.C. The goal and estimation error are aggregates of
runs where success is true (the robot reached the goal without
colliding with an obstacle). As expected, OL performs poorly,
exhibiting an extremely low success rate that drops further
with an increase in ndyn. For trials where the robot is able to
successfully execute the full trajectory, the executed trajectory
exhibits large goal error that also increases with ndyn. Com-
paratively SLAP and STEAP have a much higher success rate
and follow the decreasing trend with increasing ndyn. The goal
error in STEAP and SLAP are comparable and much lower
than OL. The estimation error is, on average, 2 times smaller
with STEAP compared to SLAP and the difference between
them increases with increasing ncam. We believe that this is
due to simultaneously solving both the trajectory estimation
and planning problems: the motion plan can help to provide
a better estimate of the robot’s trajectory and the estimate of
the trajectory can help to generate a better motion plan.

https://youtu.be/lyayNKV1eAQ


Fig. 7: Visualization of STEAP results on one run of problem
1. The green line is the ground-truth trajectory as determined
by the motion capture system, and green robot outline shows
the current pose of the Vector robot. The blue line is the
planned trajectory and the red line is the estimated trajectory.
The yellow axis is current raw pose estimate. The ground plane
is cut for visibility. Best viewed in color.

TABLE III: Real-world experimental results

Problem 1 Problem 2
OL success rate 0/10 0/10

STEAP success rate 9/10 10/10
Goal translation error (cm) 14.20 5.19

Localization error (cm) 7.07 6.45
Trajectory estimation error (cm) 3.48 2.53

B. Experiments with a Real Robot

Real-world experiments are performed in an 8m × 6m
indoor environment. Various obstacles (desks, sofas and small
objects like boxes and cans) are placed in the environment,
to simulate domestic scenes. During the experiments, ground-
truth robot trajectories are recorded by an Optitrack motion
capture system. A photo of the robot traversing the environ-
ment and a map of the environment can be found in Fig. 1
and Fig. 5, respectively. Our implementation runs on a desktop
computer equipped with Intel 4.0GHz quad-core CPU, 32GB
memory and one NVIDIA Titan X GPU. Robot sensor data
is streamed to the desktop over WiFi, and STEAP commands
are streamed back to robot after processing.

We design 2 problems for performance evaluation. In each
problem the robot starts from the start configuration, and is
tasked with driving towards the goal configuration. For both
problems the graph consists of 50 states from start to goal with
2 interpolated binary obstacle factors between any two states.
Fig. 7 shows a screenshot when the robot is running STEAP
for problem 1. To evaluate the performance of our STEAP
implementation, we performed 10 runs for each problem, in
which 5 runs switch the start and goal configurations. We
record the planned, estimated and ground-truth trajectories
and calculate the same performance criteria as in simulation:
success rate, final goal error and trajectory estimation error.

Table. III shows the performance in these real-world exper-
iments. We first run one-time batch planning by GPMP2 and
use an open loop controller to follow the planned trajectory.
Since the control command execution on the omni-directional
wheels is noisy, the robot base cannot follow the planned

trajectory well, so every run ends with a collision. With the
state estimation and replanning provided by STEAP, the robot
can follow planned trajectories better, and fix drifting. With
STEAP the robot can achieve a 95% overall success rate for
the given tasks, with final translation error of about 14.2cm in
problem 1, and 5.19cm in problem 2. This goal error is due to
the finite horizon trajectory set up we use, since if the robot
overshoots when near the end of the trajectory, it may not
have enough time steps left to recover. The goal error can be
reduced with a receding horizon formulation of our problem.

In addition to improving planning results, STEAP helps
with trajectory estimation. We show the raw localization error
in Table. III. Due to the noisy depth measurements, the
localization module provides poor estimates of the robot pose.
Sometimes the localization module additionally fails due to
the scene being out of sensor range (for example when the
robot is too close to obstacles). With STEAP we can reduce
the estimation error by about 50-60% as seen in Table. III. In
the experiments video,1 one can see that although the raw
localization positions have significant jumps between each
measurement, the estimation results in STEAP are stabilized
given previous sensor information and the planned trajectory.

To evaluate the efficiency of our implementation, we time
the localization and STEAP modules separately. Timing re-
sults show that, in real-world experiments, localization and
STEAP modules have average runtimes of 19.3ms and 76.0ms
respectively, and maximum runtimes of 30.3ms and 149ms
respectively, indicating that our localization implementation
can easily process the depth image stream at 30Hz, and run
STEAP at ∼ 10Hz.

VI. CONCLUSION

We formulate the problem of simultaneous trajectory esti-
mation and planning (STEAP) as probabilistic inference. By
representing the prior distribution of a continuous-time tra-
jectory and likelihood function of costs and observations with
factor graphs, we can efficiently perform inference to compute
the posterior distribution of the trajectory. We solve STEAP
in an online setting to simultaneously estimate and smooth the
historical trajectory as well as replan for the future trajectory
as new information is encountered. This is made possible by
efficient incremental inference to update the previous solution.
We conducted experiments in simulation and on a real mobile
manipulator and showed that our framework is able to perform
in real time and handle stochasticity associated with execution
or unmodeled behaviors. Our results demonstrate that this
framework is suitable for online applications with high-degree-
of-freedom systems in known, static real-world environments.
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