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Discrete time SLAM

Downsides:
e Measurements distorted by Rolling shutter effect

motions
e Asynchronous measurements
e Not a compact representation GPS:

i i i i i > 5Hz
: : ; +» Camera:
3.75Hz

Asynchronous data

C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss—newton for non-parametric simultaneous
localization and mapping,” Intl. J. of Robotics Research, vol. 32, no. 5, pp. 507-525, 2013.



Discrete time SLAM

Downsides: :> Continuous-time representation

e Measurements distorted by e Linear interpolation
motions e Splines

e Asynchronous measurements o Wavelets

e Not a compact representation ' Gaussian process |

1 )

C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss—newton for non-parametric simultaneous
localization and mapping,” Intl. J. of Robotics Research, vol. 32, no. 5, pp. 507-525, 2013.



Outlines

e GP as continuous-time trajectory representation
e Extend sparse GP to Lie groups

e Use sparse GP in SLAM

e Use sparse GP in motion planning



Outlines

e GP as continuous-time trajectory representation



GP as 1D continuous-time trajectory with uncertainty
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Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noise-free measurements

. O O — X
t=1s t*=1.5s7 t=2s
> 1
X | ~ (0 K(T,T), K(T,T*) e Measurements
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X1, T, X ~ N(K(T*,T)K(T,T)""' X,
K(T*,T*) - K(T*,T)K(T,T)"'K(T,T"))

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noise-free measurements

output, f(x)
output, f(x)
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less

correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on

the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noisy measurements
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Measurement function:

y=x+n,n~N(0, o) e Measurements

® Query Points
¥ N (o K({ITT)+ol, K(T,T*)
x| *| B T, K=, T
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Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noisy measurements
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Measurement function:

y=xz+n,n~N(0,o0) @ Measurements
and Query points

Measurement and Query share same time stamps:

[Q ”N(O? [K}fé’KD K = K(T,T)

XY ~ N(KIK +0I] 'Y, K — K[K + 0l]'K)

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



Another perspective ...

Measurement function:

y=x+n,n~ N(0,0)

Mean value: Maximum A Posteriori Estimation
X = argmax P(X)P(Y|X)
X

= argmax (exp(%XTK—lX) H exp ((59@ — 91)2))

X ; o
= aremi (1XTK_1X 1 YY) ot —
= argmin +-(X-Y) o I(X-Y)
X 2 2
0J —
8—X:0 :> X:(K_l—’—gml[)-lg_ly

@ Sherman—Morrison—Woodbury formula

X =K(K+ol)'Y

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



Nonlinear measurement function and high DOF...

Problem definition:

x(t) ~ GP(u(t), K(t,t'))
z; = h;(x(t;)) + n;,n; ~ N(0,%;)

Mean value: MAP Estimation

T :a,rgmax{2 |z — p % +§ | h(z) -z |5 }

ar

Gauss-Newton method
(K'"+H' S 'H)dz* =K ' (p—2)+H' X '(z —h)
x < T+ 0x™ until convergence

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse
gaussian process regression,” Robotics: Science and Systems (RSS), 2014.



Sparsity and Efficiency

Gauss-Newton step
(K '+H'Z 'H)éz* =K ' (u—z)+H' X7 (z—h)

/ N

Inverse Kernel Measurements
(Prior) (Likelihood)

e Particular kernel is needed to make sparsity

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse
gaussian process regression,” Robotics: Science and Systems (RSS), 2014.



Sparse information matrix
e Information matrix: IC~' + H' ¥ 'H

e Generally the inverse kernel matrix IC tis not sparse
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C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss—newton for non-parametric simultaneous
localization and mapping,” Intl. J. of Robotics Research, vol. 32, no. 5, pp. 507-525, 2013.



GPs generated by LTV-SDEs

e linear time-varying stochastic differential equations (LTV-SDESs)
&(t) = A(t)z(t) + u(t) + F(t)w(t),
w(t) ~ GP(0,Qcd(t — 1)),

e solution: .
p(t) = ®(t, to) o + / d(t, s)u(s)ds

J1g

K(t, ) = ®(t,to)Ko® (', to) '

min(t,t")
+ [ &(t,s)F(s)QcF(s) ®(t',s) " ds
t

< L0

e Inverse kernel matrix is tridiagonal block-wise sparse if the GP is
generated by a LTV-SDE

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse
gaussian process regression,” Robotics: Science and Systems (RSS), 2014.



Constant velocity LTV-SDEs

—— V: change slowly

O O o
e Inject white noise in acceleration
i(t) = w(t)
e Rewrite LTV-SDE
x(t):[f;gﬂ A(t):[g [1)] () =0, F(t):m

x(t) = A(t)x(t) +u(t) + F(t)w(t),
w(t) ~ GP(0,Qcd(t —t')),

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse
gaussian process regression,” Robotics: Science and Systems (RSS), 2014.



Factor Graph view
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Fig. 3: A factor graph of an example STEAM problem
containing GP prior factors and landmark measurements

factors. Landmarks are illustrated with open circles.
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T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse
gaussian process regression,” Robotics: Science and Systems (RSS), 2014.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Const-time Interpolation

e Any time could be interpolated by nearby two states
e Time complexity O(1)
e Measurements at any time fused in graph by interpolated factor

-

(d) Meausurement (b) Interpolated Factor

Fig. 2: (a) Measurement at time 7, dashed line indicates

it’s not an actual factor. (b) The interpolated factor encodes
measurement at time 7.

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse
gaussian process regression,” Robotics: Science and Systems (RSS), 2014.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Results

e 2D SLAM cases, x(?)
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Outlines

e Extend sparse GP to Lie groups



Example Lie Group: SO(2)

2 » cos(#), sin(0)
—sin(#), cos(0)

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch
continuous-time trajectory estimation on SE (3),” (IROS), 2015.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Gaussian Distribution on SO(2)

N
v,

SO(2) Tangent space: so(2) \in R"2

Lie Group:

=

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch
continuous-time trajectory estimation on SE (3),” (IROS), 2015.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Gaussian Distribution on SO(2)

\

Expmap: so(2) -> SO(2)
/ Logmap: SO(2) -> so(2)

Lie Group: SO(2) Tangent space: so(2) \in R"2

=

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch
continuous-time trajectory estimation on SE (3),” (IROS), 2015.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Gaussian Distribution on SO(2)

Expmap: so(2) -> SO(2)
/ Logmap: SO(2) -> so(2)

NIAN

Lie Group: SO(2) Tangent space: so(2) \in R"2

e \We define Gaussian on Lie group by defining Gaussian on tangent
space, then map back by exponential map

R = Rexp(c"), e~ N(0,%)

e Note that tangent space is defined on a particular 8 on Lie group

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch
continuous-time trajectory estimation on SE (3),” (IROS), 2015.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).




Local GP on SO(2)

Local GP range of T.

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch
continuous-time trajectory estimation on SE (3),” (IROS), 2015.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Local GP on SO(2)

Ti 1:i <t< 1:i+1
<+ ---------

range of &(t)

e We define a local linear variable ¢(t) around T., which locally meets
a zero-mean Gaussian process defined by kernel K(t, t)

T(t) = Tiexp(&(t)"), &(t) ~N(0,K(t;,1))
1) = log(T‘i._lT(t))v

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch
continuous-time trajectory estimation on SE (3),” (IROS), 2015.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Constant Velocity LVT-SDE

e Const body frame velocity SDE: nonlinear
(1) = wit)

e Equivalence to LTV-SDE on loca variable
&i(t) = log(T; 'T(t))"
&) =T (&) Tw(t) &) 2 wm(t)

e Local constant velocity LTV-SDE

§(t) = wi(t)

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch
continuous-time trajectory estimation on SE (3),” (IROS), 2015.

Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Outlines

e Use sparse GP in SLAM



Background

» Application: autonomous crop monitoring using UAV / UGV
» Get crop height / size / color / etc.
* Requirement: use low-cost sensors: camera, GPS, etc.

» Existing techniques: Structure from Motion (SfM): 3D reconstruction
« Difficulties: dynamic scene with crop growing: 4D reconstruction




Dataset

« Dataset: color images +
GPS + IMU, on ground
vehicle and UAV

» Ground dataset: Twice per
week for 3 months: total 23
sessions

« With ground truth height /
leaf chlorophyll at multiple
sampling sites

——GPS trajectory
* Measurement sites

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



Approach

3D Reconstruction

4D Reconstruction

Point cloud analysis

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



1. Multi-Sensor Fusion SLAM

» Multi-sensor (camera, IMU, GPS) fusion
» Using factor graph and maximum a posterior (MAP) estimation
» Optional dense reconstruction by PMVS

SIFT Feature
Extraction/Matching

Factor Graph
Optimization
with iISAM2

3D Maia and
\_____/ CameraPoses

GPS factor
3D factor graph

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



2. 4D Data Association and Reconstruction

» View-invariant feature matching by bounded search and homography warping
» Spatio-temporal (4D) factor graph optimization

Time May 25, 2016

 J

I A I W s W

View-invariant robust feature matching May 25, 2016

Day i

Day i+1

Spatio-temporal (4D) factor graph

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



Results

https://youtu.be/BgLILIsKWzlI

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).


http://www.youtube.com/watch?v=BgLlLlsKWzI
https://youtu.be/BgLlLlsKWzI
https://youtu.be/BgLlLlsKWzI

Outlines

e Use sparse GP in motion planning



Introduction

e Planning on high DOF system is difficult
e Sampling based approaches like RRT and
RPM are slow due to high DOF

e State-of-the-art approaches are mostly
optimization based

o Energy reduction

o Constrained optimization

o Factor Graph and message passing

4 )
e Main Contributions:
o Formulate motion planning as continuous trajectory estimation by GP

o Enable efficient motion planning by sparse GP and iSAM2




Motion Planning as Probabilistic inference

_ , _ ~Start- e :
e Two requirements of motion planning: |

o Feasibility: trajectory is
collision-free

o Optimality: smooth output by
reducing the energy used or
trajectory length

e Calculate the trajectory by maximize
the probability

0" = argmaxP P(c=10|0)

7\

Prior distribution: Collision-free likelihood:
enforce smoothness enforce feasibility

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."
Robotics: Science and Systems (RSS) (2016).



Collision-free Likelihood

o o _ Start - :
e Collision-free likelihood is calculated at |

each discretized points of trajectory

L(@lc =0) = HL9|CE—O

e Collision-free likelihood is defined by
exponential family

L(6) = exp(— 5 h(65))

0.8

e Obstacle cost function is defined by
hinge loss function on signed distance _

o Signed distance field is =
pre-calculated -

o Robot body use sphere model to o]

approximate

0.6

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."
Robotics: Science and Systems (RSS) (2016).



GP prior and Factor graph

e Trajectory is represented by a GP
e Trajectory prior use constant velocity GP prior
e Additional prior on start/goal configuration (Since they are known)

e Inference problem represented by a factor graph
Obstacle Factor:

e = exp{—%egngiei}j

GP Prior Factor:
fi=exp{—1eTQ; e},
e, =u; —0; + ®(t;,t;—1)0;_1

Prior Factor:
fo =exp{—3elK; en},
ey = po — by

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."
Robotics: Science and Systems (RSS) (2016).



Duality between inference and energy minimization

Trajectory Collision-free
Prior Likelihood

At
0" = argmax{ HP ¢i|0;) }

— argmin { — log (P(B) H P(Cfé|9i)> }

0

.1 1
= argmin § — || 0 — % ||12c g e || h(@) ||220bs
e 2 2

| |
Smoothness Collision
Cost Cost

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."
Robotics: Science and Systems (RSS) (2016).



Efficient planning: Use GP interpolation

e GP enable us to query any time of interest
e So we can check collision cost at more points with less states to optimize

(% tit1
Time | |
System States O
Collision Check O o O @) O o
Output Trajectory ©o 0 0o o 0 0o 0 0o 0 0 o

e A single query state is interpolated by near by two states
e Interpolated collision cost factor is binary

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."
Robotics: Science and Systems (RSS) (2016).



Evaluation: Batch planning

e Dataset: 7-DOF WAM arm and 7-DOF PR2, total 114 problems

e Criteria: Success rate, average run-time, maximum run-time

Table I.A Results for 24 planning problems on the 7-DOF WAM arm.

GPMP2_inter GPMP2_no-inter TrajOpt-101 TrajOpt-11 GPMP CHOMP STOMP
Success Rate (%) 95.8 91.7 91.7 20.8 95.8 75.0 40.0
Average Time to Success (s) 0.068 0.120 0.323 0.027 0.590 1.337 6.038
Maximum Time to Success (s) 0.112 0.217 0.548 0.033 1.322 6.768 22.971

Table I.LB Results for 90 planning problems on PR2’s 7-DOF right arm.
GPMP2 _inter GPMP2 no-inter TrajOpt-51 TrajOpt-11 GPMP CHOMP STOMP
Success Rate (%) 94.4 88.9 93.3 88.9 47.8 80.0 52.4

Average Time to Success (s) 0.033 0.053 0.860 0.168 1.134 4.999 7.586
Maximum Time to Success (5) 0.083 0.120 4.827 0.455 9516 44.623 95.679

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."

Robotics: Science and Systems (RSS) (2016).




Efficient planning: Replanning

e Example replanning problem: given
current state and a new goal

e Naive approach: plan from scratch
given current (as start) and goal states

e Fact: planning problem changes little

| e Original |
Constraint on Goal

current state
D S S D =
90 91 92 !93

)

Current state

04 Goal changes

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."

Robotics: Science and Systems (RSS) (2016).
Mukadam, Mustafa, et al. "Simultaneous Trajectory Estimation and Planning via Probabilistic Inference." Robotics:

Science and Systems (RSS) (2017).



Efficient replanning: Bayes tree and ISAM2

Factor Graph Bayes Tree
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Evaluation: Replanning

e Dataset: 7-DOF WAM arm and 7-DOF PR2, total 60 problems

Table II.A Results for 32 replanning problems on WAM. Table I1.B Results for 28 replanning problems on PR2.

iGPMP2 GPMP2 iGPMP2 GPMP2
Success Rate (%) 90.6 100.0 Success Rate (%) 75.0 96.4
Average Time to Success (ms) 2.38 30.21 Average Time to Success (ms) 4.27 26.70
Maximum Time to Success (ms) 3.92 46.60 Maximum Time to Success (ms) 6.67 58.84

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."
Robotics: Science and Systems (RSS) (2016).



Evaluation: Replanning
Dataset: 7-DOF WAM arm and 7-DOF PR2, total 60 problems
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https://github.com/gtrll/gpmp2/blob/master/

doc/pics/wam_replan_2.qif
Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."

Robotics: Science and Systems (RSS) (2016).



https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_1.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_1.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_1.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_2.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_2.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_2.gif

Real-time Replanning on Robots

imated Trajectary
Replanned Trajectory

https://voutu.be/lvayNKV1eAQ

Mukadam, Mustafa, et al. "Simultaneous Trajectory Estimation and Planning via Probabilistic Inference." Robotics:
Science and Systems (RSS) (2017).


http://www.youtube.com/watch?v=lyayNKV1eAQ
https://youtu.be/lyayNKV1eAQ
https://youtu.be/lyayNKV1eAQ

Thanks!



