
Gaussian Processes as Continuous-time 
Trajectory Representations: 
Applications in SLAM and Motion Planning

 Jing Dong
jdong@gatech.edu

2017-06-20

License CC BY-NC-SA 3.0

mailto:jdong@gatech.edu
mailto:jdong@gatech.edu


Discrete time SLAM

Rolling shutter effect

GPS: 
5Hz

Camera: 
3.75Hz

Asynchronous data

Downsides:
● Measurements distorted by 

motions
● Asynchronous measurements
● Not a compact representation

C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss–newton for non-parametric simultaneous 
localization and mapping,” Intl. J. of Robotics Research, vol. 32, no. 5, pp. 507–525, 2013.



Discrete time SLAM

Downsides:
● Measurements distorted by 

motions
● Asynchronous measurements
● Not a compact representation

Continuous-time representation
● Linear interpolation
● Splines
● Wavelets
● Gaussian process

C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss–newton for non-parametric simultaneous 
localization and mapping,” Intl. J. of Robotics Research, vol. 32, no. 5, pp. 507–525, 2013.
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GP as 1D continuous-time trajectory with uncertainty

X
t

x=f(t)

X

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noise-free measurements 

X
t

Measurements
Query Points

x=f(t)

t*?

X

t=1s t=2st*=1.5s?

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noise-free measurements 

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noisy measurements 
X

t

Measurements
Query Points

x=f(t)

Measurement function:

t*?X
t=1s t=2st*=1.5s?

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



GP with noisy measurements 
X

t

Measurements 
and Query points

x=f(t)

Measurement function:

Measurement and Query share same time stamps:

X
t=1s? t=2s?t=1.5s?

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



Another perspective ...
Measurement function:

Mean value: Maximum A Posteriori Estimation

Sherman–Morrison–Woodbury formula

Rasmussen, Carl Edward. "Gaussian processes for machine learning." (2006).



Nonlinear measurement function and high DOF...
Problem definition:

Mean value: MAP Estimation

Gauss-Newton method

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse 
gaussian process regression,” Robotics: Science and Systems (RSS), 2014. 



Sparsity and Efficiency

Gauss-Newton step

Inverse Kernel
(Prior)

Measurements
(Likelihood)

● Particular kernel is needed to make sparsity

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse 
gaussian process regression,” Robotics: Science and Systems (RSS), 2014. 



● Information matrix: 

● Generally the inverse kernel matrix          is not sparse

Sparse information matrix 

Trajectory

Landmarks

C. H. Tong, P. Furgale, and T. D. Barfoot, “Gaussian process gauss–newton for non-parametric simultaneous 
localization and mapping,” Intl. J. of Robotics Research, vol. 32, no. 5, pp. 507–525, 2013.



GPs generated by LTV-SDEs

● linear time-varying stochastic differential equations (LTV-SDEs)

● solution:

● Inverse kernel matrix is tridiagonal block-wise sparse if the GP is 
generated by a LTV-SDE

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse 
gaussian process regression,” Robotics: Science and Systems (RSS), 2014. 



● Rewrite LTV-SDE

● Inject white noise in acceleration

Constant velocity LTV-SDEs 

X

V: change slowly

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse 
gaussian process regression,” Robotics: Science and Systems (RSS), 2014. 



Factor Graph view 

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse 
gaussian process regression,” Robotics: Science and Systems (RSS), 2014. 
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).

Tri-diagonal inverse kernel

Trajectory

Landmarks



Const-time Interpolation 

● Any time could be interpolated by nearby two states
● Time complexity O(1)
● Measurements at any time fused in graph by interpolated factor

T. Barfoot, C. H. Tong, and S. Sarkka, “Batch continuous-time trajectory estimation as exactly sparse 
gaussian process regression,” Robotics: Science and Systems (RSS), 2014. 
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Results 

● 2D SLAM cases, 
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Example Lie Group: SO(2)

θ

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch 
continuous-time trajectory estimation on SE (3),” (IROS), 2015.
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Gaussian Distribution on SO(2)

Tangent space: so(2) \in R^2Lie Group: SO(2)

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch 
continuous-time trajectory estimation on SE (3),” (IROS), 2015.
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Gaussian Distribution on SO(2)

Tangent space: so(2) \in R^2Lie Group: SO(2)

Expmap: so(2) -> SO(2)
Logmap: SO(2) -> so(2)

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch 
continuous-time trajectory estimation on SE (3),” (IROS), 2015.
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



● We define Gaussian on Lie group by defining Gaussian on tangent 
space, then map back by exponential map

● Note that tangent space is defined on a particular θ on Lie group

Gaussian Distribution on SO(2)

Tangent space: so(2) \in R^2Lie Group: SO(2)

Expmap: so(2) -> SO(2)
Logmap: SO(2) -> so(2)

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch 
continuous-time trajectory estimation on SE (3),” (IROS), 2015.
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



Local GP on SO(2)

Local GP range of Ti 

Ti

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch 
continuous-time trajectory estimation on SE (3),” (IROS), 2015.
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



● We define a local linear variable ξi(t) around Ti, which locally meets 
a zero-mean Gaussian process defined by kernel K(ti, t) 

Local GP on SO(2)

range of ξi(t)

Ti ti < t < ti+1

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch 
continuous-time trajectory estimation on SE (3),” (IROS), 2015.
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).



● Const body frame velocity SDE: nonlinear

● Equivalence to LTV-SDE on loca variable

● Local constant velocity LTV-SDE 

Constant Velocity LVT-SDE

S. Anderson and T. D. Barfoot, “Full STEAM ahead: Exactly sparse gaussian process regression for batch 
continuous-time trajectory estimation on SE (3),” (IROS), 2015.
Dong, Jing, Byron Boots, and Frank Dellaert. "Sparse Gaussian Processes for Continuous-Time Trajectory 
Estimation on Matrix Lie Groups." arXiv preprint arXiv:1705.06020 (2017).
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Background

• Application: autonomous crop monitoring using UAV / UGV
• Get crop height / size / color / etc.
• Requirement: use low-cost sensors: camera, GPS, etc.

• Existing techniques: Structure from Motion (SfM): 3D reconstruction
• Difficulties: dynamic scene with crop growing: 4D reconstruction

✓ ✗



Dataset

• Dataset: color images + 
GPS + IMU, on ground 
vehicle and UAV

• Ground dataset: Twice per 
week for 3 months: total 23 
sessions

• With ground truth height / 
leaf chlorophyll at multiple 
sampling sites

50m

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



Approach

GPS        IMU

3D Reconstruction

4D Reconstruction

Point cloud analysis

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



1. Multi-Sensor Fusion SLAM

• Multi-sensor (camera, IMU, GPS) fusion
• Using factor graph and maximum a posterior (MAP) estimation
• Optional dense reconstruction by PMVS

3D factor graph

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



2. 4D Data Association and Reconstruction

• View-invariant feature matching by bounded search and homography warping
• Spatio-temporal (4D) factor graph optimization

View-invariant robust feature matching

Spatio-temporal (4D) factor graph

Day i

Day i+1

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).



Results

https://youtu.be/BgLlLlsKWzI

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." ICRA (2017).

http://www.youtube.com/watch?v=BgLlLlsKWzI
https://youtu.be/BgLlLlsKWzI
https://youtu.be/BgLlLlsKWzI
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● Planning on high DOF system is difficult
● Sampling based approaches like RRT and 

RPM are slow due to high DOF

● State-of-the-art approaches are mostly 
optimization based

○ Energy reduction (Zucker et al, 2013 IJRR, 
Ratliff et al, 2009 ICRA)

○ Constrained optimization (Schluman et al, 
2013 RSS)

○ Factor Graph and message passing 
(Toussaint et al, 2010 Book) 

Introduction

● Main Contributions: 
○ Formulate motion planning as continuous trajectory estimation by GP 
○ Enable efficient motion planning by sparse GP and iSAM2



● Two requirements of motion planning:

○ Feasibility: trajectory is 
collision-free

○ Optimality: smooth output by 
reducing the energy used or 
trajectory length

● Calculate the trajectory by maximize 
the probability

Motion Planning as Probabilistic inference

Prior distribution:
enforce smoothness

Collision-free likelihood:
enforce feasibility

Start

End

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).



● Collision-free likelihood is calculated at 
each discretized points of trajectory 

● Collision-free likelihood is defined by 
exponential family 

● Obstacle cost function is defined by 
hinge loss function on signed distance
○ Signed distance field is 

pre-calculated
○ Robot body use sphere model to 

approximate 

Collision-free Likelihood
Start

End

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).



GP prior and Factor graph
● Trajectory is represented by a GP
● Trajectory prior use constant velocity GP prior
● Additional prior on start/goal configuration (Since they are known)

● Inference problem represented by a factor graph

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).



Duality between inference and energy minimization

Trajectory 
Prior

Collision-free 
Likelihood

Smoothness 
Cost

Collision
Cost

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).



Efficient planning: Use GP interpolation
● GP enable us to query any time of interest
● So we can check collision cost at more points with less states to optimize

● A single query state is interpolated by near by two states
● Interpolated collision cost factor is binary

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).



● Dataset: 7-DOF WAM arm and 7-DOF PR2, total 114 problems

● Criteria: Success rate, average run-time, maximum run-time

Evaluation: Batch planning

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).



Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).
Mukadam, Mustafa, et al. "Simultaneous Trajectory Estimation and Planning via Probabilistic Inference." Robotics: 
Science and Systems (RSS) (2017).

Efficient planning: Replanning
Start

Original 
Goal

New 
GoalCurrent 

state

● Example replanning problem: given 
current state and a new goal

● Naive approach: plan from scratch 
given current (as start) and goal states

● Fact: planning problem changes little

Current state

Goal changes

Constraint on 
current state



Efficient replanning: Bayes tree and iSAM2

Constraint on 
current state

Goal changes

Original graph



● Dataset: 7-DOF WAM arm and 7-DOF PR2, total 60 problems

Evaluation: Replanning

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).



● Dataset: 7-DOF WAM arm and 7-DOF PR2, total 60 problems

Evaluation: Replanning

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."  
Robotics: Science and Systems (RSS) (2016).

https://github.com/gtrll/gpmp2/blob/master/
doc/pics/wam_replan_1.gif

https://github.com/gtrll/gpmp2/blob/master/
doc/pics/wam_replan_2.gif

https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_1.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_1.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_1.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_2.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_2.gif
https://github.com/gtrll/gpmp2/blob/master/doc/pics/wam_replan_2.gif


Real-time Replanning on Robots

Mukadam, Mustafa, et al. "Simultaneous Trajectory Estimation and Planning via Probabilistic Inference." Robotics: 
Science and Systems (RSS) (2017).

https://youtu.be/lyayNKV1eAQ

http://www.youtube.com/watch?v=lyayNKV1eAQ
https://youtu.be/lyayNKV1eAQ
https://youtu.be/lyayNKV1eAQ


Thanks!


