
GTSAM 4.0 Tutorial
Theory, Programming, and Applications

Jing Dong
2016-11-19

License CC BY-NC-SA 3.0

GTSAM: https://bitbucket.org/gtborg/gtsam
Examples: https://github.com/dongjing3309/gtsam-examples

https://bitbucket.org/gtborg/gtsam
https://github.com/dongjing3309/gtsam-examples

Outline
● Theory

○ SLAM as a Factor Graph
○ SLAM as a Non-linear Least Squares
○ Optimization on Manifold/Lie Groups
○ iSAM2 and Bayes Tree

● Programming
○ First C++ example
○ Use GTSAM in Matlab
○ Write your own factor
○ Expression: Automatic Differentiation (AD) (New in 4.0!)
○ Traits: Optimize any type in GTSAM (New in 4.0!)
○ Use GTSAM in Python (New in 4.0!)

● Applications
○ Visual-Inertial Odometry
○ Structure from Motion (SfM)
○ Multi-Robot SLAM: Coordinate Frame and Distrubuted Optimization
○ Multi-View Stereo and Optical Flow
○ Motion Planning

Outline
● Theory

○ SLAM as a Factor Graph
○ SLAM as a Non-linear Least Squares
○ Optimization on Manifold/Lie Groups
○ iSAM2 and Bayes Tree

● Programming
○ First C++ example
○ Use GTSAM in Matlab
○ Write your own factor
○ Expression: Automatic Differentiation (AD) (New in 4.0!)
○ Traits: Optimize any type in GTSAM (New in 4.0!)
○ Use GTSAM in Python (New in 4.0!)

● Applications
○ Visual-Inertial Odometry
○ Structure from Motion (SfM)
○ Multi-Robot SLAM: Coordinate Frame and Distrubuted Optimization
○ Multi-View Stereo and Optical Flow
○ Motion Planning

SLAM as a Bayes Net

SLAM as a Factor Graph

SLAM as a Non-linear Least Squares

● Maximum a posteriori (MAP) estimation

● Log likelihood

for each

Non-linear Least Squares

● Gauss-Newton method:

● Linear approximation of the vector function (get Jacobians)

with

● Quadratic approximation of the cost error function (get Hessian)

Linear Least Squares

● Gauss-Newton method: Given a set of initial values, linearize the non-linear
problem around current values, and solve linear least square problems
iteratively.

Given

● Other method like Levenberg–Marquardt or Trust Region methods are also
fine, since they are just using different updating strategy.

Example

Linear Least Squares

● QR decomposition

● Cholesky decomposition

Full SAM approach

Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via
square root information smoothing." The International Journal of Robotics Research 25.12 (2006):
1181-1203.

Ordering

● Select the correct column ordering
does matter since it decide the
sparsity of information matrix

● Use COLAMD to find the best
ordering just based on information
matrix

Optimization on Manifold/Lie Groups

Dellaert, Frank. "Derivatives and Differentials" in GTSAM repository /doc/math.pdf

● Lie group:

Optimization on Manifold/Lie Groups

Dellaert, Frank. "Derivatives and Differentials" in GTSAM repository /doc/math.pdf

● General manifold (if not Lie group):

iSAM2 and Bayes tree

● iSAM2 is used to perform
incremental inference
(optimization) problems: when
small part of the problem is
changed and major part remain
unchanged.

● Use Bayes tree as back-end data
strcuture

Kaess, Michael, et al. "iSAM2: Incremental smoothing and
mapping using the Bayes tree." The International Journal
of Robotics Research (2011): 0278364911430419.

iSAM2 and Bayes tree

Kaess, Michael, et al. "iSAM2: Incremental smoothing and
mapping using the Bayes tree." The International Journal
of Robotics Research (2011): 0278364911430419.

Outline
● Theory

○ SLAM as a Factor Graph
○ SLAM as a Non-linear Least Squares
○ Optimization on Manifold/Lie Groups
○ iSAM2 and Bayes Tree

● Programming
○ First C++ example
○ Use GTSAM in Matlab
○ Write your own factor
○ Expression: Automatic Differentiation (AD) (New in 4.0!)
○ Traits: Optimize any type in GTSAM (New in 4.0!)
○ Use GTSAM in Python (New in 4.0!)

● Applications
○ Visual-Inertial Odometry
○ Structure from Motion (SfM)
○ Multi-Robot SLAM: Coordinate Frame and Distrubuted Optimization
○ Multi-View Stereo and Optical Flow
○ Motion Planning

First C++ Example

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

1. Build factor graph
2. Give initial values (this is a little bit tricky and highly

application-related, design your strategy based on
your application!)

3. Optimize!
4. (Optional) Post process, like calculate marginal

distributions

First C++ Example

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

1. Build Factor Graph

https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/examples/Pos
e2SLAMExample.cpp

https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/examples/Pose2SLAMExample.cpp
https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/examples/Pose2SLAMExample.cpp
https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/examples/Pose2SLAMExample.cpp

First C++ Example

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

2. Noisy Initial Values

3. Optimize!

4. (Optinal) Post Process like Marginals

First C++ Example

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

Use GTSAM in Matlab

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

1. Build Factor Graph

https://github.com/dongjing3309/gtsam-examples/blob/master/matlab/Pose
2SLAMExample.m

https://github.com/dongjing3309/gtsam-examples/blob/master/matlab/Pose2SLAMExample.m
https://github.com/dongjing3309/gtsam-examples/blob/master/matlab/Pose2SLAMExample.m
https://github.com/dongjing3309/gtsam-examples/blob/master/matlab/Pose2SLAMExample.m

Use GTSAM in Matlab

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

2. Noisy Initial Values

3. Optimize!

Use GTSAM in Matlab

x1 x2 x3

x5 x4

Odometry Factor

Loop Closure Factor

Prior Factor

Write your own factor

x1 x2 x3

Odometry Factor

GPS Factor

● GTSAM doesn’t have factors for all sensor...
● Customize your factor based on your sensors
● Design a cost function to minimize

● Here we consider a position-only measurement (like
GPS), the error is difference of estimated position
and measured position.

Write your own factor

x1 x2 x3

Odometry Factor

GPS Factor

https://github.com/dongjing3309/gtsam-examples/blob/master/c
pp/GPSPose2Factor.h

Derived from a GTSAM NoiseModelFactor
unary factor class

Contains measurement

Initial Base class by variable key and noise model

Implement evaluateError function for cost

Optional Jacobians are needed
(generally the hardest part!!!)

Return cost vector

https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/GPSPose2Factor.h
https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/GPSPose2Factor.h
https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/GPSPose2Factor.h

Write your own factor

x1 x2 x3

Odometry Factor

GPS Factor

Insert in Factor Graph

Results

https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/
examples/Pose2GPSExample.cpp

Noise model dimension should
match error vector dimension

https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/examples/Pose2GPSExample.cpp
https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/examples/Pose2GPSExample.cpp
https://github.com/dongjing3309/gtsam-examples/blob/master/cpp/examples/Pose2GPSExample.cpp

Use your own factor in Matlab

x1 x2 x3

Odometry Factor

GPS Factor

● Factors are defined in C++, how to use in Matlab?

● Technique: GTSAM can generate .mex file and .m file for
given C++ code (classes and functions)

● Usage: declear classes/functions needed in Matlab in a
{project_name}.h file,
and call wrap_and_install_library in CMake

gtsamexamples.h

CMakeLists.txt

Use your own factor in Matlab

x1 x2 x3

Odometry Factor

GPS Factor

Expression: Automatic Differentiation (AD)

● Recall that the hardset part to write your own factor is the Jacobians!
● If the cost function can be decomposed to several functions which have

Jacobians easier to calculate, we can apply chain rule:

● Automatic Differentiation (AD) can do this for you, by just providing each
function plus jacobians!

Expression: Automatic Differentiation (AD)
● GTSAM implements AD by Expression
● An Expression can be a variable, a function, or a constant
● Expression can take Expressions as input to apply chain rule

● Example: compute func_a of x1 and x2, then calculate the func_b of
func_a result and a constant c1

// Expression type for Point3
typedef Expression<Point3> Point3_

// Expressions for variables
Point3_ x1(‘x’1), x2(‘x’,2);
// Expressions for const
Point3_ c1(Point3(1., 2., 3.));

// Expressions for function func_b(func_a(x1, x2), c1)
Point3_ g(&func_a, x1, x2);
Point3_ f(&func_b, g, c1);

// OR calculate the Expression g at once
Point3_ f(&func_b, Point3_(&func_a, x1, x2), c1);

Expression example: GPS expression

x1 x2 x3

Odometry Factor

GPS Factor

functions.h

functions.cpp

expressions.h

Pose2GPSExpressionExample.cpp

Design your cost
function as usual

Convert your cost function
as expression

Expression factor
has error |f(x) - z|^2

Traits: Optimize any type in GTSAM

● gtsam::traits are a step towards making GTSAM more modern and
more efficient, by defining type properties such as dimensionality,
group-ness, etc with boost::traits style meta-functions.

● Data structure gtsam::Values can now take any type, provided the
necessary gtsam::traits are defined.

● You may want to optimize variable types other
than GTSAM provided Vector, SE(2), SO(3),
SE(3), etc… (although GTSAM provides a lot!)
○ e.g. State space of a mobile manipulator

(mobile base + a 7 DOF arm) is SE(2) x
R(7).

● You may not have access to change the types
○ e.g. You are using some classes by other

libs like g2o, ceres, etc.)

How GTSAM understand objects by
gtsam::traits?

Testble: Basic GTSAM classes
Functions needed: Equal, Print

Manifold: GTSAM optimizable classes
Functions needed: dimension,
GetDimension, Local, Retract

LieGroup: GTSAM optimizable and can use
GTSAM Lie-group-only utils like BetweenFactor
Functions needed: Identity, Logmap,
Expmap, Compose, Between, Inverse

gtsam::traits example
● A minimal custom 2D point R(2) class
● Can be treated as a Lie group (a vector space is a naive Lie group)
● But nothing about Lie group property inside class

● Traits must be in namespace gtsam
● gtsam::traits is a template specialization for type Point2c
● Fill in the functions needed in gtsam::traits, depends on the type you

want to define for Point2c (Testable / Manifold / LieGroup)

gtsam::traits example

Functions as Testble

Functions as Manifold

gtsam::traits example
Functions as Lie group

gtsam::traits example

x1 x2 x3

Between Factor

Prior Factor

CustomPoint2Example.cpp

All code shown in this section can be found in:
https://github.com/dongjing3309/gtsam-examples

https://github.com/dongjing3309/gtsam-examples
https://github.com/dongjing3309/gtsam-examples

Outline
● Theory

○ SLAM as a Factor Graph
○ SLAM as a Non-linear Least Squares
○ Optimization on Manifold/Lie Groups
○ iSAM2 and Bayes Tree

● Programming
○ First C++ example
○ Use GTSAM in Matlab
○ Write your own factor
○ Expression: Automatic Differentiation (AD) (New in 4.0!)
○ Traits: Optimize any type in GTSAM (New in 4.0!)
○ Use GTSAM in Python (New in 4.0!)

● Applications
○ Visual-Inertial Odometry
○ Structure from Motion (SfM)
○ Multi-Robot SLAM: Coordinate Frame and Distrubuted Optimization
○ Multi-View Stereo and Optical Flow
○ Motion Planning

Visual-Inertial Odometry
● IMU: Pre-integrated measurements between key-frames
● Visual landmarks: Structure-less factor by Schur complement

Forster, Christian, et al. "On-Manifold Preintegration for Real-Time Visual-Inertial Odometry." arXiv preprint
arXiv:1512.02363 (2015).
Carlone, Luca, et al. "Eliminating conditionally independent sets in factor graphs: A unifying perspective based
on smart factors." 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014.

Visual-Inertial Odometry

https://youtu.be/CsJkci5lfco

http://www.youtube.com/watch?v=CsJkci5lfco
https://youtu.be/CsJkci5lfco
https://youtu.be/CsJkci5lfco

Structure from Motion (SfM)
● Large-scale spatio-temporal (4D) reconstruction for agriculture (offline)
● Multi sensor: camera, GPS, IMU

Dong, Jing, et al. "4D Crop Monitoring: Spatio-Temporal Reconstruction for Agriculture." arXiv preprint
arXiv:1610.02482 (2016).

Structure from Motion (SfM)

https://youtu.be/BgLlLlsKWzI

http://www.youtube.com/watch?v=BgLlLlsKWzI
https://youtu.be/BgLlLlsKWzI
https://youtu.be/BgLlLlsKWzI

Multi-Robot SLAM
● Solve initial relative transformation -> a common reference frame
● Distributed optimization

Dong, Jing, et al. "Distributed real-time cooperative localization and mapping using an uncertainty-aware
expectation maximization approach." 2015 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015.

Multi-Robot SLAM

https://youtu.be/m_bLSdsT2kg

https://youtu.be/m_bLSdsT2kg
https://youtu.be/m_bLSdsT2kg
http://www.youtube.com/watch?v=m_bLSdsT2kg

Dense Multi-View Stereo and Optical Flow
● Simiar to MRF, but use factor graph and least square optimization

Lv, Zhaoyang, et al. "A Continuous Optimization Approach for Efficient and Accurate Scene Flow." European
Conference on Computer Vision. Springer International Publishing, 2016.

Dense Multi-View Stereo and Optical Flow

https://youtu.be/2A7lOipPNBA

https://youtu.be/2A7lOipPNBA
https://youtu.be/2A7lOipPNBA
http://www.youtube.com/watch?v=2A7lOipPNBA

Motion Planning
● Solve trajectory optimization problems
● Minimize smooth cost + collision cost

Dong, Jing, et al. "Motion Planning as Probabilistic Inference using Gaussian Processes and Factor Graphs."
Robotics: Science and Systems (RSS), 2016

Motion Planning

https://youtu.be/mVA8qhGf7So

https://youtu.be/mVA8qhGf7So
https://youtu.be/mVA8qhGf7So
http://www.youtube.com/watch?v=mVA8qhGf7So

Acknowledgement
Many thanks to my advisors!

Prof. Frank Dellaert
Prof. Byron Boots

and many thanks to collaborators and labmates!

Prof. Nathan Michael
Prof. Glen C. Rains
Luca Carlone
Vadim Indelman
Erik Nelson
Mustafa Mukadam
Zhaoyang Lv
Duy-Nguyen Ta
Yong-Dian Jian
and many...

